Accelerate Framework
& the Armadillo Library

Instructor - Simon Lucey

16-423 - Desighing Computer Vision Apps

Carnegie Mellon

¥ THE ROBOTICS INSTITUTE

Today

* Motivation
 Accelerate Framework

* BLAS & LAPACK
* Armadillo Library

Algorithm

Software

Architecture

SOC Hardware

lgorithm

Software

rchitecture

C Hardware

This CVPR2015 naner is the Onen Access version. nrovided bv the Comnuter Vision Foundati

Correlation Filters with Limited Boundaries

Hamed Kiani Galoogahi Terence Sim Simon Lucey
Istituto Italiano di Tecnologia National University of Singapore Carnegie Mellon University
Genova, Italy Singapore Pittsburgh, USA
hamed.kiani@iit.it tsim@comp.nus.edu.sg slucey@cs.cmu.edu

Abstract

Correlation filters take advantage of specific proper-
ties in the Fourier domain allowing them to be estimated
efficiently: O(NDlogD) in the frequency domain, ver-
sus O(D® + ND?) spatially where D is signal length,
and N is the number of signals. Recent extensions to cor-
relation filters, such as MOSSE, have reignited interest of
their use in the vision community due to their robustness
and attractive computational properties. In this paper we
demonstrate, however, that this computational efficiency

main, (ii) dramatically reduces boundary effects, and (iii)
is able to implicitly exploit all possible patches densely ex-
tracted from training examples during learning process. Im-
pressive object tracking and detection results are presented
in terms of both accuracy and computational efficiency.

1. Introduction

Correlation between two signals is a standard approach
to feature detection/matching. Correlation touches nearly
every facet of computer vision from pattern detection to ob-
ject tracking. Correlation is rarely performed naively in the
spatial domain. Instead, the fast Fourier transform (FFT)
affords the efficient application of correlating a desired tem-
plate/filter with a signal.

Correlation filters, developed initially in the seminal
work of Hester and Casasent [15], are a method for learning
a template/filter in the frequency domain that rose to some
prominence in the 80s and 90s. Although many variants
have been proposed [15, 18, 20, 19], the approach’s central
tenet is to learn a filter, that when correlated with a set of
training signals, gives a desired response, e.g. Figure 1 (b).
Like correlation, one of the central advantages of the ap-

Fim the example
the image from which the peak cOfrela®®I output should occur.
(b) The desired output response, based on (a), of the correlation
filter when applied to the entire image. (c) A subset of patch ex-
amples used in a canonical correlation filter where green denotes
a non-zero correlation output, and red denotes a zero correlation
output in direct accordance with (b). (d) A subset of patch ex-
amples used in our proposed correlation filter. Note that our pro-
posed approach uses all possible patches stemming from different
parts of the image, whereas the canonical correlation filter simply
employs circular shifted versions of the same single patch. The
central dilemma in this paper is how to perform (d) efficiently in
the Fourier domain. The two last patches of (d) show that %
patches near the image border are affected by circular shift in our
method which can be greatly diminished by choosing D << T,
where D and T indicate the length of the vectorized face patch in
(a) and the whole image in (a), respectively.

proach is that it attempts to learn the filter in the frequency
domain due to the efficiency of correlation in that domain.
Interest in correlation filters has been reignited in the vi-
sion world through the recent work of Bolme et al. [5] on
Minimum Output Sum of Squared Error (MOSSE) correla-
tion filters for object detection and tracking. Bolme et al.’s
work was able to circumvent some of the classical problems

4630

Algorithm

Software

5. Now apply some OpenCV operations
::Mat gray; cv::cvtColor(cvImage, gray,

CV_RGBA2GRAY); // Convert to grayscale

: :GaussianBlur(gray, gray, cv::Size(5,5), 1.2, 1.2); //
Apply Gaussian blur

: :Mat edges; cv::Canny(gray, edges, @, 50); // Estimate
edge map using Canny edge detector

[] 8 x [[[T& 4-way

SIMD (Single Instruction, Multiple Data)

Architecture

SOC Hardware

Reminder: ldeal Von Neumann Processor

» each cycle, CPU takes data from registers, does an
operation, and puts the result back

* |load/store operations (memory «—— registers) also take one
cycle

* CPU can do different operations each cycle output of one
operation can be input to next

—31 opT > time

—3 op2 (——

* CPU’s haven’t been this simple for a long time!

http://people.maths.ox.ac.uk/gilesm/cuda/lecs/lec0.pdf

Reminder: CPU clock is stuck!!!!

* CPU clock stuck at about 3GHz since 2006 due to high
power consumption (up to 130W per chip)

* chip circuitry still doubling every 18-24 months
* = more on-chip memory and MMU (memory management

units)
» = specialised hardware (e.g. multimedia, encryption) =

multi-core (multiple CPU’s on one chip)
» peak performance of chip still doubling every 18-24 months

http://people.maths.ox.ac.uk/gilesm/cuda/lecs/lec0.pdf

UP TO

H0x

FASTER

CPU PERFORMANCE

Architecture Considerations

* Memory hierarchy.

* Vector instructions.

Regs

Cache

/ Main Memory \

/ Disk/Virtual Memory\

Small, fast, expensive

A

Y

/ Tape, Remote Access, etc. Large, slow, cheap

]+

] x

4-way

SIMD (Single Instruction, Multiple Data

* Multiple threads.

CORE 1

MULTI-CORE CPU

CORE 2

)

Writing fast vision code.....

In general you should NOT be trying to do these
optimizations yourself.

BUT, you should be using tools to find where the biggest
losses in performance are coming from.

Xcode comes with an excellent tool for doing this which is
called “instruments”.

Ray Wenderlich has a useful tutorial (see link) on using
instruments in Xcode.
o~

More on this in later lectures.

Time Profiler

http://www.raywenderlich.com/23037/how-to-use-instruments-in-xcode

Today

 Motivation
 Accelerate Framework

* BLAS & LAPACK
* Armadillo Library

Accelerate Framework

v @ OponV_.vorsus_Armadlllo

‘.. ..:.

armadillo

» | | armadillo_bits
h AppDelegate.h
m AppDelegate.m
h ViewController.h
Ej\ﬂeu(kxﬂnﬂknunnn
| Main.storyboard
5] Images.xcassets

//
//
//
//
//
//

ViewController.m
OpenCV_versus_Armadillo

Created by Simon Lucey on 9
Copyright (c) 2015 CMU_1643

gimport "ViewController.h"

#ifdef _ cplusplus

#include "armadillo" // Include
#include <opencv2/opencv.hpp> /
#include <stdlib.h> // Include
#Fendif

@interface ViewController ()

Accelerate Framework

Accelerate Fram ework

Jaguar f mj mj -EFJ i

0S5 4

(vForce) ;

http://www.mactech.com/sites/default/files/Biggus-Accelerate_IV.pdf

Accelerate Framework

1990 2000

LAPAGCRN vForce o
vDSP

http://www.mactech.com/sites/default/files/Biggus-Accelerate_IV.pdf

Accelerate Framework

“image operations” “matrix operations”

S—

“signal processing” “misc math”

e
M e

Today

 Motivation
 Accelerate Framework

* BLAS & LAPACK
* Armadillo Library

Accelerate Framework
vecLib vlmage

[BLAS LAPACK

.

Matrix-Matrix Multiplication (MMM)

Matrix-Matrix Multiplication (MMM) on 2 x Core 2 Duo 3 GHz
Performance [Gflop/s]

50
45
40
35
30
25
20
15
10

5

MMM kernel function

Multiple threads: 4x

Vector instructions: 4x

Memory hierarcny: 20x

0

>> A*B

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000

matrix size

(in MATLAB)

Taken from Markus Puschel - “How to Write Fast Numerical Code”.

https://www.inf.ethz.ch/personal/markusp/teaching/263-2300-ETH-spring15/course.html

BLAS

» Basic Linear Algebra Subprograms
* Level 1 (70s)

y < axX+y

* Level 2 (mid 80s)

y < aAx + By
 Level 3 (late 80s)

C « aAB + 5C

 BLAS was originally used to implement the linear algebra
subroutine library (LINPACK).

The Path to LAPACK

» EISPACK and LINPACK (early 70s)

* Libraries for linear algebra algorithms
 Jack Dongarra, Jim Bunch, Cleve Moler, Gilbert Stewart
* LINPACK still the name of the benchmark for the TOP500 (Wiki) list of
most powerful supercomputers
* Problem

* Implementation vector-based = low operational intensity
(e.g., MMM as double loop over scalar products of vectors)

* Low performance on computers with deep memory hierarchy (in the
80s)

« Solution: LAPACK

« Reimplement the algorithms “block-based,” i.e., with locality
* Developed late 1980s, early 1990s
« Jim Demmel, Jack Dongarra et al.

Taken from Markus Puschel - “How to Write Fast Numerical Code”.

https://www.inf.ethz.ch/personal/markusp/teaching/263-2300-ETH-spring15/course.html

Availability of LAPACK

* LAPACK available on nearly all platforms.

* Numerous implementations,

* Intel MKL (Windows, Linux, OS X)

- AMD ACML

* OpenBLAS (Windows, Linux, Android, OS X)
* Apple Accelerate (OS X, i0S)

Which is Easier to Follow?

#include <stdioc.h> /* I/0 1ib I50C */
#include <stdlib.h> /* Standard Lib I50C */
#include "blaio.h" /* Basic Linear Algebra I/0 */

int main(int argc, char **argv) ¢

double a[4*5] { 1, 6, 11, 16,
2, 1, 12, 117,
3, 8, 13, 18,
4, 9, 14, 19,
5, 10, 15, 20 };

double x[5] {2,3,4,5,6};

double y(4];

printMatrix(CblasColMajor, 4, 5, a, 8, 3, NULL, NULL, NULL, NULL, NULL, "

printVector(5, x, 8, 3, NULL, NULL, NULL, " X ")

/* row order transform lenY lenX alpha a lda X 1incX
cblas dgemv(CblasColMajor, CblasNoTrans, 4, 5, 1, a, 4, x, 1,
printVector(4, v, 8, 3, NULL, NULL, NULL, " y<=1.0%a*xT+0.0*y= "),

/* row order lenY lenX alpha X 1incX Y, incY A LDA */
cblas dger(CblasColMajor, 4, 5, 1, v, 1, x, 1, a, 4);
4

printMatrix(CblasColMajor, 4, 5, a, 8, 3, NULL, NULL, NULL, NULL, NULL, "a

return 0;
/* end func main*/

Which is Easier to Follow?

>> v A*x

MATLAB

* Invented in the late 70s by Cleve Moler
* Commercialized (MathWorks) in 84
* Motivation: Make LINPACK, EISPACK easy to use

* Matlab uses LAPACK and other libraries but can only call it if
you operate with matrices and vectors and do not write your

own |loops
« A*B (calls MMM routine)

« A\b (calls linear system solver)

“Computer Vision Algorithms”

n =

MATLAB

BLAS LAPACK

Problems with MATLAB

* Proprietary command line interpreted package.

* Extremely large (current desktop version is 6.83 Gb -
compressed!!l).

* Designed more for prototyping, on high-end desktops.

* Not very useful for mobile development.

\

MATLAB

“Computer Vision Algorithms”

*
[B LAS =~ - aPACK

*

Problems with OpenCV

* OpenCV improves greatly upon this issue.

« Completely free and written in C++.
« Has an OK matrix library, relatively easy to interpret.
* Much light(er) weight (in size) than MATLAB.

 However, has problems.
« Still relatively big - opencv2. framework is 23Mb compressed!!!

* Not as fast as it should/could be.

* Alternate light-weight math libraries can help here,
* Eigen (support for ARM NEON intrinsics)
* Armadillo (uses LAPACK, MATLAB syntax)

http://eigen.tuxfamily.org/
http://arma.sourceforge.net/

Side Note: How Big Should an App Be?

» Customers and clients care about app size...

* Average size of App is around 23 Mb, and for games is now
60Mb (see link).

* Apple has a maximum cellular download limit of 100MB (see
link).
 Size of current opencv2.framework is 78.7 Mb - uncompressed!
* Important consideration in the design of a computer

vision app Is its size.

30

http://allthingsd.com/20121017/displays-are-getting-better-and-ios-apps-are-getting-laaaaarrrrrger/

asncn bnans i
e

Accelerate Framework comes “built in” to all iOS devices.
NOTHING TO DOWNLOAD!!

Accelerate Framework

Today

 Motivation
 Accelerate Framework

* BLAS & LAPACK
* Armadillo Library

“Computer Vision Algorithms”

Tl
.

. ‘\; + ?
BLAS LAPACK

Armadillo - C++ Algebra Library

« Armadillo is a clean C++ math/algebra library.
» Like MATLAB sits on top of BLAS + LAPACK.
* Unlike MATLAB it is,

* it is extremely light-weight and small.

* portable across any platform (iI0OS, Android, Linux, Windows,
MAC OS X).

« C++ templated library so it can be used easily within

Obijective C in iOS and other mobile platforms.

2 Armadillo
“S C++ linear algebra library

http://arma.sourceforge.net/
https://en.wikipedia.org/wiki/Template_(C%2B%2B)

Armadillo to MATLAB

Matlab/Octave Armadillo Notes

A1, 1) A(0, 0) indexing in Armadillo starts at 0

Ak, k) A(k-1, k-1)

size(A,1) A.n_rows read only

size(A,2) A.n cols

size(Q,3) Q.n_slices Q is a cube (3D array)

numel(A) A.n_elem

A(:, k) A.col(k) this is a conceptual example only; exact conversion fr
will require taking into account that indexing starts a'

Ak, 3) A.row(k)

A(:, p:q) A.cols(p, q)

A(p:q, 3) A.rows(p, q)

A(p:q, r:s) A(span(p,q), span(r,s)) A(span(first_row, last_row), span(first_col, last_col))

* Please follow link for the full APl documentation on the Armadillo library.

http://arma.sourceforge.net/docs.html

Armadillo in Xcode

I-EI OpenCV _versus_ Armadillo
— 2 targets, iI0S SDK 8.4

k- E Accelerate.framework
k- ﬁ opencv2.framework
v | |OpenCV_versus_Armadillo

armadillo

A\ppDelegate.
m AppDelegate.m
h ViewController.h
@ ViewController.mm

Main.storyboard

5] Images.xcassets

// ViewController.m

// OpenCV_versus_Armadillo

//

// Created by Simon Lucey on 9
// Copyright (c) 2015 CMU_1643
[/

gimport "ViewController.h"

/ Include
opencv.hpp> /
#1nclude <stdlib.h> // Include
#Fendif

@interface ViewController ()

Armadillo versus OpenCV

* We are now going to have a play with Armadillo, in
comparison to OpenCV.

* On your browser please go to the address,

https://github.com/slucey-cs-cmu—-edu/OpenCV vs Armadillo

* Or better yet, if you have git installed you can type from the
command line.

$ glt clone https://github.com/slucey-cs-cmu-edu/OpenCV vs Armadillo.git

https://github.com/slucey-cs-cmu-edu/OpenCV_vs_Armadillo
https://github.com/slucey-cs-cmu-edu/Example_OCV.git

Armadillo versus OpenCV

#import "ViewController.h"

#ifdef __cplusplus

#include "armadillo" // Includes the armadillo library
#include <opencv2/opencv.hpp> // Includes the opencv Llibrary
#include <stdlib.h> // Include the standard library

#endif

@interface ViewController ()
@end
@implementation ViewController

- (void)viewDidLoad {
[super viewDidlLoad];
// Do any additional setup after loading the view, typically from a nib.

// Simple comparison between Armadillo and OpenCV
using namespace std;

int D = 3000; // Number of columns in A
int M = 400; // Number of rows in A
int trials = 3000; // Number of trials

// Step 1. initialize random data
// In MATLAB: x = randn(D,1);
arma::fmat x; x.randn(D,1);

// In MATLAB: A = randn(D,D);
arma::fmat A; A.randn(M,D);

Armadillo versus OpenCV

// Step 2. 1ntlialize the clock
arma::wall_clock timer;

// Step 3. apply matrix multiplication operation in OpenCV
// Remember: in OpenCV everything is stored in row order
// so cvA is a DxM matrix not a MxD matrix!!!!

cv::Mat cvA = Arma2Cv(A); // Convert to an OpenCV matrix
cv::Mat cvx = Arma2Cv(x); // Convert to an OpenCV vector
cv::Mat cvy(1,M,CV_32F); // Allocate space for y
timer.tic();
for(int i=0; i<trials; i++) {

cvy = cvxkCcvA; // Apply multiplication in OpenCV
}
double cv_n_secs = timer.toc();
cout << "OpenCV took " << cv_n_secs << " seconds." << endl;

// Step 4. apply matrix multiplication in Armadillo
arma::fmat y(M,1); // Allocate space first
timer.tic();
for(int i=0; i<trials; i++) {
y = AxxX; // Apply multiplication in Armadillo
}
double arma_n_secs = timer.toc();
cout << "Armadillo took " << arma_n_secs << " seconds." << endl;
cout << "Armadillo is " << cv_n_secs/arma_n_secs << " times faster than OpenCV!!!" << endl;

On the iPhone 6 Simulator

/7 5.LﬂlpL€ CONparl L5011 DELWCECTI ATNQULLLO allld UPCHILV
using namespace std;

int D = 3000; // Number of columns in A
int M = 400; // Number of rows in A
int trials = 3000; // Number of trials

// Step 1. initialize random data
// In MATLAB: x = randn(D,1);
arma::fmat x; x.randn(D,1);

// In MATLAB: A = randn(D,D);
arma::fmat A: A.randn(M.D):

<7 OpenCV_versus_Armadillo

OpenCV took 3.99296 seconds.
Armadillo took 0.375662 seconds.
Armadillo is 10.6291 times faster than OpenCV!!!

On the Device - iPhone 6

/7 S1 il W 1 Upencv
using namespace std;

int D = 3000; // Number of columns in A
int M = 400; // Number of rows in A
int trials = 3000; // Number of trials

// Step 1. initialize random data
// In MATLAB: x = randn(D,1);
arma::fmat x; x.randn(D,1);

// In MATLAB: A = randn(D,D);
arma::fmat A: A.randn(M.D):

4 OpenCV_versus_Armadillo

OpenCV took 10.9482 seconds.
Armadillo took 2.73892 seconds.
Armadillo is 3.99727 times faster than OpenCV!!!

Playback on the Device - iPhone 6

'*' N\ OpenCV...Armadillo

No Debug Session

(8.3

U

}

8 Simon Lucey’s iPhone Finished running OpenCV_versus_Armadillo on Simon Lucey's iPhone 21

OpenCV_versus_Armadillo OpenCV_versus_Armadillo ' m ViewControllermm » %) -viewDidLoad

int M = 400; // Number of rows in A
int trials = 3000; // Number of trials

// Step 1. initialize random data
// In MATLAB: x = randn(D,1);
arma::fmat x; x.randn(D,1);

// In MATLAB: A = randn(D,D);
arma: :fmat A; A.randn(M,D);

// Step 2. intialize the clock
arma: :wall_clock timer;

// Step 3. apply matrix multiplication operation in OpenCV
// Remember: in OpenCV everything is stored in row order
// S0 cvA is a DxM matrix not a MxD matrix!!!!

cviiMat cvA = Arma2Cv(A); // Convert to an OpenCV matrix
cv::Mat cvx = Arma2Cv(x); // Convert to an OpenCV vector
cv::Mat cvy(1,M,CV_32F); // Allocate space for y

timer.tic();
for(int i=0; i<trials; i++) {
cvy = cvx*CvA; // Apply multiplication in OpenCV

double cv_n_secs = timer.toc();
cout << "OpenCV took " << cv_n_secs << " seconds." << endl;

// Step 4. apply matrix multiplication in Armadillo
arma: :fmat y(M,1); // Allocate space first
timer.tic();
for(int i=0; i<trials; i++) {

y = Aex; // Apply multiplication in Armadillo
}

double arma_n_secs = timer.toc();
cout << "Armadillo took " << arma_n_secs << " seconds." << endl;
cout << "Armadillo is " << cv_n_secs/arma_n_secs << " times faster than OpenCV!!!" << endl;

- (void)didReceiveMemoryWarning {

}

[super didReceiveMemoryWarning];
// Dispose of any resources that can be recreated.

// Quick function to convert to Armadillo matrix header
arma::fmat Cv2Arma(cv::Mat &cvX)

{

arma::fmat X(cvX.ptr<float>(0), cvX.cols, cvX.rows, false); // This is the transpose of the OpenCV X_
return X; // Return the new matrix (no new memory allocated)

On the Device - iPAD 2

// Simple comparison between Armadillo and OpenCV
using namespace std;

int D 3000; // Number of columns in A
int M 400: // Number of rows in A
int trials = 3000; // Number of trials

// Step 1. initialize random data
// In MATLAB: x = randn(D,1);
arma::fmat x; x.randn(D,1);

// In MATLAB: A = randn(D,D);
arma::fmat A; A.randn(M,D);

4 OpenCV_versus_Armadillo

OpenCV took 53.1328 seconds.
Armadillo took 18.7615 seconds.
Armadillo is 2.83202 times faster than OpenCV!!!

Armadillo Examples

* Feel free to try out this Armadillo example, that uses matrix
multiplication, SVD, Backslash, and FFT.

* On your browser please go to the address,

https://github.com/slucey-cs-cmu-edu/Intro i0S Armadillo

* Or better yet, if you have git installed you can type from the
command line.

$ glt clone https://github.com/slucey-cs-cmu-edu/Intro i0OS Armadillo.git

https://github.com/slucey-cs-cmu-edu/Intro_iOS_Armadillo
https://github.com/slucey-cs-cmu-edu/Intro_iOS_Armadillo.git

