
Accelerate Framework
& the Armadillo Library

Instructor - Simon Lucey

16-423 - Designing Computer Vision Apps

Today

• Motivation

• Accelerate Framework

• BLAS & LAPACK

• Armadillo Library

Algorithm

Software

Architecture

SOC Hardware

Algorithm

Software

Architecture

SOC Hardware

Correlation Filters with Limited Boundaries

Hamed Kiani Galoogahi
Istituto Italiano di Tecnologia

Genova, Italy
hamed.kiani@iit.it

Terence Sim
National University of Singapore

Singapore
tsim@comp.nus.edu.sg

Simon Lucey
Carnegie Mellon University

Pittsburgh, USA
slucey@cs.cmu.edu

Abstract

Correlation filters take advantage of specific proper-

ties in the Fourier domain allowing them to be estimated

efficiently: O(ND logD) in the frequency domain, ver-

sus O(D3 + ND2) spatially where D is signal length,

and N is the number of signals. Recent extensions to cor-

relation filters, such as MOSSE, have reignited interest of

their use in the vision community due to their robustness

and attractive computational properties. In this paper we

demonstrate, however, that this computational efficiency

comes at a cost. Specifically, we demonstrate that only 1
D

proportion of shifted examples are unaffected by boundary

effects which has a dramatic effect on detection/tracking

performance. In this paper, we propose a novel approach

to correlation filter estimation that: (i) takes advantage of

inherent computational redundancies in the frequency do-

main, (ii) dramatically reduces boundary effects, and (iii)

is able to implicitly exploit all possible patches densely ex-

tracted from training examples during learning process. Im-

pressive object tracking and detection results are presented

in terms of both accuracy and computational efficiency.

1. Introduction

Correlation between two signals is a standard approach
to feature detection/matching. Correlation touches nearly
every facet of computer vision from pattern detection to ob-
ject tracking. Correlation is rarely performed naively in the
spatial domain. Instead, the fast Fourier transform (FFT)
affords the efficient application of correlating a desired tem-
plate/filter with a signal.

Correlation filters, developed initially in the seminal
work of Hester and Casasent [15], are a method for learning
a template/filter in the frequency domain that rose to some
prominence in the 80s and 90s. Although many variants
have been proposed [15, 18, 20, 19], the approach’s central
tenet is to learn a filter, that when correlated with a set of
training signals, gives a desired response, e.g. Figure 1 (b).
Like correlation, one of the central advantages of the ap-

(a) (b)

� �(c) (d)

Figure 1. (a) Defines the example of fixed spatial support within

the image from which the peak correlation output should occur.

(b) The desired output response, based on (a), of the correlation

filter when applied to the entire image. (c) A subset of patch ex-

amples used in a canonical correlation filter where green denotes

a non-zero correlation output, and red denotes a zero correlation

output in direct accordance with (b). (d) A subset of patch ex-

amples used in our proposed correlation filter. Note that our pro-

posed approach uses all possible patches stemming from different

parts of the image, whereas the canonical correlation filter simply

employs circular shifted versions of the same single patch. The

central dilemma in this paper is how to perform (d) efficiently in

the Fourier domain. The two last patches of (d) show that D−1

T

patches near the image border are affected by circular shift in our

method which can be greatly diminished by choosing D << T ,

where D and T indicate the length of the vectorized face patch in

(a) and the whole image in (a), respectively.

proach is that it attempts to learn the filter in the frequency
domain due to the efficiency of correlation in that domain.

Interest in correlation filters has been reignited in the vi-
sion world through the recent work of Bolme et al. [5] on
Minimum Output Sum of Squared Error (MOSSE) correla-
tion filters for object detection and tracking. Bolme et al.’s
work was able to circumvent some of the classical problems

Ax = b

Algorithm

Software

Architecture

Hardware

Algorithm

Software

Architecture

SOC Hardware

© Markus Püschel
Computer Science

How to write fast numerical code
Spring 2015

SIMD Vector Extensions

� What is it?
� Extension of the ISA
� Data types and instructions for the parallel computation on short

(length 2, 4, 8, …) vectors of integers or floats
� Names: MMX, SSE, SSE2, …

� Why do they exist?
� Useful: Many applications have the necessary fine-grain parallelism

Then: speedup by a factor close to vector length
� Doable: Relative easy to design; chip designers have enough transistors to

play with

+ x 4-way

5

© Markus Püschel
Computer Science

128 bit

256 bit

64 bit
(only int)

MMX:
Multimedia extension

SSE:
Streaming SIMD extension

AVX:
Advanced vector extensions

time

x86-64 / em64t

x86-32

x86-16

MMX

SSE

SSE2

SSE3

SSE4

8086

286

386
486
Pentium
Pentium MMX

Pentium III

Pentium 4

Pentium 4E

Pentium 4F

Core 2 Duo
Penryn
Core i7 (Nehalem)
Sandy Bridge
Haswell

Intel x86 Processors

AVX
AVX2

register
width

SIMD (Single Instruction, Multiple Data)

Reminder: Ideal Von Neumann Processor

• each cycle, CPU takes data from registers, does an
operation, and puts the result back

• load/store operations (memory ←→ registers) also take one
cycle

• CPU can do different operations each cycle output of one
operation can be input to next

• CPU’s haven’t been this simple for a long time!
7

Ideal Von Neumann Processor

each cycle, CPU takes data from registers, does an
operation, and puts the result back
load/store operations (memory←→ registers) also take
one cycle
CPU can do different operations each cycle
output of one operation can be input to next

✲
timeop1✲✲ ✲

op2✲✲ ✲

op3✲✲ ✲

CPU’s haven’t been this simple for a long time! Lecture 0 – p. 5

Taken from http://people.maths.ox.ac.uk/gilesm/cuda/lecs/lec0.pdf

http://people.maths.ox.ac.uk/gilesm/cuda/lecs/lec0.pdf

Reminder: CPU clock is stuck!!!!

• CPU clock stuck at about 3GHz since 2006 due to high
power consumption (up to 130W per chip)

• chip circuitry still doubling every 18-24 months
• ⇒ more on-chip memory and MMU (memory management

units)
• ⇒ specialised hardware (e.g. multimedia, encryption) ⇒

multi-core (multiple CPU’s on one chip)
• peak performance of chip still doubling every 18-24 months

8
Taken from http://people.maths.ox.ac.uk/gilesm/cuda/lecs/lec0.pdf

http://people.maths.ox.ac.uk/gilesm/cuda/lecs/lec0.pdf

2010

2014

Architecture Considerations

• Memory hierarchy.

• Vector instructions.

• Multiple threads.

© Markus Püschel
Computer Science

How to write fast numerical code
Spring 2015

SIMD Vector Extensions

� What is it?
� Extension of the ISA
� Data types and instructions for the parallel computation on short

(length 2, 4, 8, …) vectors of integers or floats
� Names: MMX, SSE, SSE2, …

� Why do they exist?
� Useful: Many applications have the necessary fine-grain parallelism

Then: speedup by a factor close to vector length
� Doable: Relative easy to design; chip designers have enough transistors to

play with

+ x 4-way

5

© Markus Püschel
Computer Science

128 bit

256 bit

64 bit
(only int)

MMX:
Multimedia extension

SSE:
Streaming SIMD extension

AVX:
Advanced vector extensions

time

x86-64 / em64t

x86-32

x86-16

MMX

SSE

SSE2

SSE3

SSE4

8086

286

386
486
Pentium
Pentium MMX

Pentium III

Pentium 4

Pentium 4E

Pentium 4F

Core 2 Duo
Penryn
Core i7 (Nehalem)
Sandy Bridge
Haswell

Intel x86 Processors

AVX
AVX2

register
width

SIMD (Single Instruction, Multiple Data)

Writing fast vision code…..

• In general you should NOT be trying to do these
optimizations yourself.

• BUT, you should be using tools to find where the biggest
losses in performance are coming from.

• Xcode comes with an excellent tool for doing this which is
called “instruments”.

• Ray Wenderlich has a useful tutorial (see link) on using
instruments in Xcode.

• More on this in later lectures.

http://www.raywenderlich.com/23037/how-to-use-instruments-in-xcode

Today

• Motivation

• Accelerate Framework

• BLAS & LAPACK

• Armadillo Library

Accelerate Framework

Accelerate Framework
Accelerate

(vForce)

Jaguar
iOS 4

Tiger
iOS 5

Taken from: http://www.mactech.com/sites/default/files/Biggus-Accelerate_IV.pdf

http://www.mactech.com/sites/default/files/Biggus-Accelerate_IV.pdf

Accelerate FrameworkHistory

1980 1990 2000 2010

LAPACK

vDSP

vImage

vForce
vMathLib
vBasicOps
vBigNum

BLAS

Taken from: http://www.mactech.com/sites/default/files/Biggus-Accelerate_IV.pdf

http://www.mactech.com/sites/default/files/Biggus-Accelerate_IV.pdf

Accelerate Framework

“image operations” “matrix operations”

“signal processing” “misc math”

Today

• Motivation

• Accelerate Framework

• BLAS & LAPACK

• Armadillo Library

Matrix-Matrix Multiplication (MMM)

© Markus Püschel
Computer Science

How to write fast numerical code
Spring 2015

0

5

10

15

20

25

30

35

40

45

50

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000

matrix size

Matrix-Matrix Multiplication (MMM) on 2 x Core 2 Duo 3 GHz
Performance [Gflop/s]

Memory hierarchy: 20x
Vector instructions: 4x

Multiple threads: 4x

� Compiler doesn’t do the job
� Doing by hand: nightmare

3

MMM kernel function

Algorithms

Software

Compilers

Microarchitecture

performance

Algorithms

Software

Compilers

Microarchitecture

Compilers

Performance is different than other software quality features

4

>> A*B (in MATLAB)
Taken from Markus Püschel - “How to Write Fast Numerical Code”.

https://www.inf.ethz.ch/personal/markusp/teaching/263-2300-ETH-spring15/course.html

BLAS

• Basic Linear Algebra Subprograms
• Level 1 (70s)

• Level 2 (mid 80s)

• Level 3 (late 80s)

• BLAS was originally used to implement the linear algebra
subroutine library (LINPACK).

The Path to LAPACK

• EISPACK and LINPACK (early 70s)
• Libraries for linear algebra algorithms
• Jack Dongarra, Jim Bunch, Cleve Moler, Gilbert Stewart
• LINPACK still the name of the benchmark for the TOP500 (Wiki) list of

most powerful supercomputers
• Problem

• Implementation vector-based = low operational intensity  
(e.g., MMM as double loop over scalar products of vectors)

• Low performance on computers with deep memory hierarchy (in the
80s)

• Solution: LAPACK
• Reimplement the algorithms “block-based,” i.e., with locality
• Developed late 1980s, early 1990s
• Jim Demmel, Jack Dongarra et al.

Taken from Markus Püschel - “How to Write Fast Numerical Code”.

https://www.inf.ethz.ch/personal/markusp/teaching/263-2300-ETH-spring15/course.html

Availability of LAPACK

• LAPACK available on nearly all platforms.
• Numerous implementations,

• Intel MKL (Windows, Linux, OS X)
• AMD ACML
• OpenBLAS (Windows, Linux, Android, OS X)
• Apple Accelerate (OS X, iOS)

Which is Easier to Follow?

Which is Easier to Follow?

>> y = A*x

MATLAB

• Invented in the late 70s by Cleve Moler
• Commercialized (MathWorks) in 84
• Motivation: Make LINPACK, EISPACK easy to use
• Matlab uses LAPACK and other libraries but can only call it if

you operate with matrices and vectors and do not write your
own loops
• A*B (calls MMM routine)

• A\b (calls linear system solver)  

BLAS LAPACK

“Computer Vision Algorithms”

Problems with MATLAB

• Proprietary command line interpreted package.
• Extremely large (current desktop version is 6.83 Gb -

compressed!!!).
• Designed more for prototyping, on high-end desktops.
• Not very useful for mobile development.

BLAS LAPACK

“Computer Vision Algorithms”

Problems with OpenCV

• OpenCV improves greatly upon this issue.
• Completely free and written in C++.
• Has an OK matrix library, relatively easy to interpret.
• Much light(er) weight (in size) than MATLAB.

• However, has problems.
• Still relatively big - opencv2.framework is 23Mb compressed!!!

• Not as fast as it should/could be.

• Alternate light-weight math libraries can help here,
• Eigen (support for ARM NEON intrinsics)
• Armadillo (uses LAPACK, MATLAB syntax)

http://eigen.tuxfamily.org/
http://arma.sourceforge.net/

Side Note: How Big Should an App Be?

• Customers and clients care about app size…
• Average size of App is around 23 Mb, and for games is now

60Mb (see link).
• Apple has a maximum cellular download limit of 100MB (see

link).
• Size of current opencv2.framework is 78.7 Mb - uncompressed!

• Important consideration in the design of a computer
vision app is its size.

30

http://allthingsd.com/20121017/displays-are-getting-better-and-ios-apps-are-getting-laaaaarrrrrger/

Accelerate Framework comes “built in” to all iOS devices.
NOTHING TO DOWNLOAD!!

Today

• Motivation

• Accelerate Framework

• BLAS & LAPACK

• Armadillo Library

BLAS LAPACK

“Computer Vision Algorithms”

+ ?

Armadillo - C++ Algebra Library

• Armadillo is a clean C++ math/algebra library.

• Like MATLAB sits on top of BLAS + LAPACK.

• Unlike MATLAB it is,

• it is extremely light-weight and small.

• portable across any platform (iOS, Android, Linux, Windows,

MAC OS X).

• C++ templated library so it can be used easily within

Objective C in iOS and other mobile platforms.

http://arma.sourceforge.net/
https://en.wikipedia.org/wiki/Template_(C%2B%2B)

Armadillo to MATLAB

• Please follow link for the full API documentation on the Armadillo library.

http://arma.sourceforge.net/docs.html

Armadillo in Xcode

Armadillo versus OpenCV

• We are now going to have a play with Armadillo, in
comparison to OpenCV.

• On your browser please go to the address,

https://github.com/slucey-cs-cmu-edu/OpenCV_vs_Armadillo

• Or better yet, if you have git installed you can type from the
command line.

$ git clone https://github.com/slucey-cs-cmu-edu/OpenCV_vs_Armadillo.git

https://github.com/slucey-cs-cmu-edu/OpenCV_vs_Armadillo
https://github.com/slucey-cs-cmu-edu/Example_OCV.git

Armadillo versus OpenCV

Armadillo versus OpenCV

On the iPhone 6 Simulator

On the Device - iPhone 6

Playback on the Device - iPhone 6

On the Device - iPAD 2

Armadillo Examples

• Feel free to try out this Armadillo example, that uses matrix
multiplication, SVD, Backslash, and FFT.

• On your browser please go to the address,

https://github.com/slucey-cs-cmu-edu/Intro_iOS_Armadillo

• Or better yet, if you have git installed you can type from the
command line.

$ git clone https://github.com/slucey-cs-cmu-edu/Intro_iOS_Armadillo.git

https://github.com/slucey-cs-cmu-edu/Intro_iOS_Armadillo
https://github.com/slucey-cs-cmu-edu/Intro_iOS_Armadillo.git

