
Deep Learning

Instructor - Simon Lucey

16-423 - Designing Computer Vision Apps

Today

• Single-Layer Perceptron

• Multi-Layer Perceptron

• Convolutional Neural Network

Linear Binary Classification

3

[65,09,67,.......,78,66,76,215]

x 2 RD

�
< 0

x 2 C1

x 2 C2

w

T
x+ w0

T

Linear Binary Classification

3

[65,09,67,.......,78,66,76,215]

x 2 RD

�
< 0

x 2 C1

x 2 C2

w

T
x+ w0

“Perceptron”

T

Linear Binary Classification

3

[65,09,67,.......,78,66,76,215]

x 2 RD

�
< 0

x 2 C1

x 2 C2

w

T
x+ w0

“Linear
Discriminant”

T

Reminder: Perceptron

• Rosenblatt simulated the perceptron on
a IBM 704 computer at Cornell in 1957.

• Input scene (i.e. printed character) was
illuminated by powerful lights and
captured on a 20x20 cadmium sulphide
photo cells.

• Weights of perceptron were applied
using variable rotary resistors.

• Often times referred to as the very first
neural network.

4.1. Discriminant Functions 193

where the nonlinear activation function f(·) is given by a step function of the form

f(a) =
{

+1, a ! 0
−1, a < 0. (4.53)

The vector φ(x) will typically include a bias component φ0(x) = 1. In earlier
discussions of two-class classification problems, we have focussed on a target coding
scheme in which t ∈ {0, 1}, which is appropriate in the context of probabilistic
models. For the perceptron, however, it is more convenient to use target values
t = +1 for class C1 and t = −1 for class C2, which matches the choice of activation
function.

The algorithm used to determine the parameters w of the perceptron can most
easily be motivated by error function minimization. A natural choice of error func-
tion would be the total number of misclassified patterns. However, this does not lead
to a simple learning algorithm because the error is a piecewise constant function
of w, with discontinuities wherever a change in w causes the decision boundary to
move across one of the data points. Methods based on changing w using the gradi-
ent of the error function cannot then be applied, because the gradient is zero almost
everywhere.

We therefore consider an alternative error function known as the perceptron cri-
terion. To derive this, we note that we are seeking a weight vector w such that
patterns xn in class C1 will have wTφ(xn) > 0, whereas patterns xn in class C2

have wTφ(xn) < 0. Using the t ∈ {−1, +1} target coding scheme it follows that
we would like all patterns to satisfy wTφ(xn)tn > 0. The perceptron criterion
associates zero error with any pattern that is correctly classified, whereas for a mis-
classified pattern xn it tries to minimize the quantity −wTφ(xn)tn. The perceptron
criterion is therefore given by

EP(w) = −
∑

n∈M

wTφntn (4.54)

Frank Rosenblatt
1928–1969

Rosenblatt’s perceptron played an
important role in the history of ma-
chine learning. Initially, Rosenblatt
simulated the perceptron on an IBM
704 computer at Cornell in 1957,
but by the early 1960s he had built

special-purpose hardware that provided a direct, par-
allel implementation of perceptron learning. Many of
his ideas were encapsulated in “Principles of Neuro-
dynamics: Perceptrons and the Theory of Brain Mech-
anisms” published in 1962. Rosenblatt’s work was
criticized by Marvin Minksy, whose objections were
published in the book “Perceptrons”, co-authored with

Seymour Papert. This book was widely misinter-
preted at the time as showing that neural networks
were fatally flawed and could only learn solutions for
linearly separable problems. In fact, it only proved
such limitations in the case of single-layer networks
such as the perceptron and merely conjectured (in-
correctly) that they applied to more general network
models. Unfortunately, however, this book contributed
to the substantial decline in research funding for neu-
ral computing, a situation that was not reversed un-
til the mid-1980s. Today, there are many hundreds,
if not thousands, of applications of neural networks
in widespread use, with examples in areas such as
handwriting recognition and information retrieval be-
ing used routinely by millions of people.

“Frank Rosenblatt”

Linear Discriminant Functions182 4. LINEAR MODELS FOR CLASSIFICATION

Figure 4.1 Illustration of the geometry of a
linear discriminant function in two dimensions.
The decision surface, shown in red, is perpen-
dicular to w, and its displacement from the
origin is controlled by the bias parameter w0.
Also, the signed orthogonal distance of a gen-
eral point x from the decision surface is given
by y(x)/∥w∥.

x2

x1

w
x

y(x)
∥w∥

x⊥

−w0
∥w∥

y = 0
y < 0

y > 0

R2

R1

an arbitrary point x and let x⊥ be its orthogonal projection onto the decision surface,
so that

x = x⊥ + r
w
∥w∥ . (4.6)

Multiplying both sides of this result by wT and adding w0, and making use of y(x) =
wTx + w0 and y(x⊥) = wTx⊥ + w0 = 0, we have

r =
y(x)
∥w∥ . (4.7)

This result is illustrated in Figure 4.1.
As with the linear regression models in Chapter 3, it is sometimes convenient

to use a more compact notation in which we introduce an additional dummy ‘input’
value x0 = 1 and then define w̃ = (w0,w) and x̃ = (x0,x) so that

y(x) = w̃Tx̃. (4.8)

In this case, the decision surfaces are D-dimensional hyperplanes passing through
the origin of the D + 1-dimensional expanded input space.

4.1.2 Multiple classes
Now consider the extension of linear discriminants to K > 2 classes. We might

be tempted be to build a K-class discriminant by combining a number of two-class
discriminant functions. However, this leads to some serious difficulties (Duda and
Hart, 1973) as we now show.

Consider the use of K−1 classifiers each of which solves a two-class problem of
separating points in a particular class Ck from points not in that class. This is known
as a one-versus-the-rest classifier. The left-hand example in Figure 4.2 shows an

C1

C2

Linear Binary Classification

6

[65,09,67,.......,78,66,76,215]

x 2 RD

�
< 0

x 2 C1

x 2 C2

T

w

w0

�T
x

1

�

Linear Binary Classification

6

[65,09,67,.......,78,66,76,215]

x 2 RD

�
< 0

x 2 C1

x 2 C2

T

w

T
x

binary labels

(a) (b)(a) (b)

(a) (b)

(a) (b)

(a) (b)

(a) (b)

(a) (b)

Perceptron Linear Discriminant

ti = �1

ti = +1

xi = i-th training example

w = weight vector

argmin

w

NX

n=1

max(0, tn · xT
nw)

binary labels

(a) (b)(a) (b)

(a) (b)

(a) (b)

(a) (b)

(a) (b)

(a) (b)

Perceptron Linear Discriminant

ti = �1

ti = +1

xi = i-th training example

w = weight vector

argmin

w

NX

n=1

max(0, tn · xT
nw)

binary labels

(a) (b)(a) (b)

(a) (b)

(a) (b)

(a) (b)

(a) (b)

(a) (b)

Perceptron Linear Discriminant

ti = �1

ti = +1

xi = i-th training example

w = weight vector

argmin
w

NX

n=1

E(tn · xT
nw)

margin / (wT w)�1

(a) (b)

Perceptron Linear Discriminant

argmin
w

NX

n=1

E(tn · xT
nw) +

�

2
||w||22

Other Objectives
• Other objectives are possible,

7.1. Maximum Margin Classifiers 337

Figure 7.5 Plot of the ‘hinge’ error function used
in support vector machines, shown
in blue, along with the error function
for logistic regression, rescaled by a
factor of 1/ ln(2) so that it passes
through the point (0, 1), shown in red.
Also shown are the misclassification
error in black and the squared error
in green.

−2 −1 0 1 2
z

E(z)

remaining points we have ξn = 1 − yntn. Thus the objective function (7.21) can be
written (up to an overall multiplicative constant) in the form

N∑

n=1

ESV(yntn) + λ∥w∥2 (7.44)

where λ = (2C)−1, and ESV(·) is the hinge error function defined by

ESV(yntn) = [1 − yntn]+ (7.45)

where [·]+ denotes the positive part. The hinge error function, so-called because
of its shape, is plotted in Figure 7.5. It can be viewed as an approximation to the
misclassification error, i.e., the error function that ideally we would like to minimize,
which is also shown in Figure 7.5.

When we considered the logistic regression model in Section 4.3.2, we found it
convenient to work with target variable t ∈ {0, 1}. For comparison with the support
vector machine, we first reformulate maximum likelihood logistic regression using
the target variable t ∈ {−1, 1}. To do this, we note that p(t = 1|y) = σ(y) where
y(x) is given by (7.1), and σ(y) is the logistic sigmoid function defined by (4.59). It
follows that p(t = −1|y) = 1 − σ(y) = σ(−y), where we have used the properties
of the logistic sigmoid function, and so we can write

p(t|y) = σ(yt). (7.46)

From this we can construct an error function by taking the negative logarithm of the
likelihood function that, with a quadratic regularizer, takes the formExercise 7.6

N∑

n=1

ELR(yntn) + λ∥w∥2. (7.47)

where
ELR(yt) = ln (1 + exp(−yt)) . (7.48)

least-squares ||z � 1||22

sigmoid 1

1 + exp(�z)

hinge max(0, 1� z)

Optimizing Weights
• Expressing the final objective as,

f(w) =
NX

n=1

E(tn · xT
nw) +

�

2
||w||22

• Simplest strategy is to employ gradient-descent
optimization,

w ! w � ⌘
@f(w)

@w

Optimizing Weights
• Expressing the final objective as,

“Learning Rate”

f(w) =
NX

n=1

E(tn · xT
nw) +

�

2
||w||22

• Simplest strategy is to employ gradient-descent
optimization,

w ! w � ⌘
@f(w)

@w

Gradient-Descent Optimization

• Works for any function that can have a gradient estimated.

• Guaranteed to converge towards local-minima.

• Scales well to extremely large amounts of data.

• Notoriously slow (linear convergence).

• Often guess work associated tuning the learning rate.

Optimizing Weights

2

64
w1
...

wK

3

75

2

64
w1
...

wK

3

75+ ⌘

2

664

@f(w)
@w1

...
@f(w)
@wK

3

775

Optimizing Weights

2

64
w1
...

wK

3

75

2

64
w1
...

wK

3

75+ ⌘

2

664

@f(w)
@w1

...
@f(w)
@wK

3

775

Optimizing Weights - Per Sample
• Objective nearly always summation over N samples,

“Learning Rate”

• So one can update the weights per sample,

f(w) =
NX

n=1

fn(w)

w ! w � ⌘

N

@fn(w)

@w

Single Layer - Example

fn(w) =
1

2
||1� tn · xT

nw||22 +
�

2N
||w||22

Single Layer - Example

fn(w) =
1

2
||1� tn · xT

nw||22 +
�

2N
||w||22

@fn(w)

@w
= (xT

nw � tn)xn +
�

N
w

Today

• Single-Layer Perceptron

• Multi-Layer Perceptron

• Convolutional Neural Network

Multi-Layer Perceptron

Multi-Layer Perceptron

W(1)
x

(M ⇥D)

Multi-Layer Perceptron

W(1)
x

h(W(1)
x)

-4 -3 -2 -1 0 1 2 3 4
-1

-0.5

0

0.5

1

x

h
(x
)

(M ⇥D)

Multi-Layer Perceptron

W(1)
x

z

�
< 0

x 2 C1

x 2 C2

(M ⇥D)

(1⇥M)

[w(2)]T

2

4
0
0
0

3

5
T

news and views

nature neuroscience • volume 2 no 11 • november 1999 933

nition process are tied to the appearance
of objects as originally viewed — that is,
from a specific viewpoint in which an
object has actually appeared. In contrast,
the latter hold that the neural representa-
tions that form the basis of the recognition
process are organized into hierarchies of
features or parts that are either partially or
completely independent of any particular
viewpoint. Which approach better cap-
tures the body of extant results has been
the subject of heated debate over the past
several years1,2. Resolving this debate, how-
ever, has been rather difficult, in that the
best-specified theory, a structural-descrip-
tion model in which objects are repre-
sented as collections of 3D volumes3, is not
particularly consistent with either neural4

or behavioral5 data. On the other hand, the
strongest point in favor of view-based
models has been a set of experimentally-
generated phenomena4,5, rather than a
detailed theory that can account for these
data. Indeed, view-based models have
remained relatively simplistic entities
which do not generalize very well from
familiar to novel viewing conditions6. As
such, the current debate has reached a bit
of stalemate.

In this issue, Riesenhuber and Poggio7

present a new model that has the poten-
tial to remove the impasse. (Because their
term for the model — “hierarchical model
of object recognition” is rather cumber-
some, I have dubbed it ‘HMAX’ which
roughly stands for ‘Hierarchical Model
And X’ – where X is a highly non-linear
maXimum operation.) What they present
is a computational implementation of a
view-based theory of object recognition
that rests heavily on the functional archi-
tecture of the cortical temporal lobe
stream — the part of the brain that is
believed to mediate visual object recogni-
tion. The functional properties of this
neural pathway were first described by
Hubel and Wiesel8, who demonstrated
that information processing in this part
of visual cortex proceeds in a hierarchical
fashion. Specifically (see Fig. 1), the cor-
tical temporal lobe stream progresses from
local responses driven by simple stimulus
properties— for example, oriented lines
—to more global responses driven by
more complex stimulus properties — for
example, bars of particular lengths and
widths8. More recently, it has been
demonstrated that this hierarchy contin-
ues into inferotemporal cortex (IT), where
cells presumably combine the responses
of earlier cortical areas into highly specif-
ic pattern detectors — for example, neu-
rons that respond most strongly to

power to such systems, known views of a
given object or object class are not treat-
ed completely independently of one
another; rather they are ‘pooled’ to form
‘multiple-views’ object representations .
For example, in Poggio and Edelman’s
implementation6, a computational net-
work learned specific views of novel stim-
uli, but then was able to accurately
recognize the same stimuli in new view-
points by interpolating between the
appearance of two or more known views
for a particular object. Other view-based
models have proposed similar normal-
ization mechanisms, for instance, align-
ing a description of the input image with
a known view11 or accumulating evidence
across a set of viewpoint-specific feature
detectors12. For all of these models, the
critical prediction is progressively poor-
er generalization — in the form of either
weaker neural responses or diminished
recognition performance — with increas-
ing distance between a test view and any
known view of an object. At the same
time, whereas view-based models have
tacitly acknowledged that scale- and posi-
tion-invariance are desirable properties
that are suggested by the extant data, they
have not actually proposed mechanisms
for achieving either type of invariance.
Even worse, implementing such invari-
ances would be difficult given the kinds
of features typically used to construct
viewpoint-specific representations, for
example, the (X,Y) image coordinates of
an object’s vertices6. Indeed, the use of
such highly specific coding schemes led
to some of the strongest criticisms of

complex shapes9, individual faces10, or
objects4. Similarly, in HMAX, Riesenhu-
ber and Poggio implement a hierarchy of
conjunctions and disjunctions of pro-
gressively more and more complex feature
combinations, culminating in object-spe-
cific units that are ‘view-tuned’ — that is,
object representations that respond most
strongly to a single viewpoint. Corre-
spondingly, the same sensitivity to view-
point is found in the neurophysiology of
IT, where the vast majority of neurons
that are object-specific appear to respond
preferentially to a particular viewpoint
(although there are also some neurons
that respond equally well to any view)4,10.
At the same time, view-tuned cells typi-
cally respond in an invariant manner to
changes in size or distance. Thus, the chal-
lenge is to develop a theory that predicts
viewpoint-dependent performance for
recognizing known objects, but with lit-
tle or no scale- or position-dependence.

Riesenhuber and Poggio’s model
shows precisely this sort of response pat-
tern, being robust over changes in scale or
position — yet, as already mentioned, the
units coding for specific objects within
HMAX are highly viewpoint-dependent.
The primary reason for this behavior is
that HMAX relies on a non-linear maxi-
mum operation (‘MAX’) for combining
feature responses at one stage in order to
create more complex feature detectors at a
subsequent stage. In the model, the use of
the MAX operator means that the
strongest signal among features feeding
into a unit at the next layer will determine
the response of this unit. This method for
pooling responses also allows Riesenhu-
ber and Poggio’s model to perform well
even with images containing more than
one object. As with the pattern of
responses for feature detectors in HMAX,
the non-linear MAX mechanism for pool-
ing afferents seems to have an analog in
neurophysiology, possibly arising from
lateral inhibition between cells at each
processing stage.

In contrast to the wide explanatory
power of HMAX, this group’s earlier
model of visual recognition6 dealt almost
exclusively with techniques for using
viewpoint-specific object representations
to achieve viewpoint-invariant recogni-
tion. Their solution, typical of nearly all
instantiations of the view-based
approach1,5, was to encode multiple views
of each known object, so that almost any
new view would likely be near to a famil-
iar view. Consequently, recognition per-
formance would be relatively
viewpoint-invariant. Adding additional

Fig. 1. The temporal stream within visual cor-
tex processes information in a hierarchical fash-
ion. Earlier visual areas are most responsive to
simple stimulus patterns such as oriented lines.
In contrast, later visual areas such as inferotem-
poral cortex (IT) have recently been shown to
be sensitive to complex shapes or specific
objects in specific views. It is thought that these
more complex object representations are con-
structed out of progressively more and more
complex feature detectors.

View-tuned
cells

Complex

Simple

Bob Crimi

© 1999 Nature America Inc. • http://neurosci.nature.com

©
 1

99
9

N
at

ur
e

A
m

er
ic

a
In

c.
 •

ht
tp

://
ne

ur
os

ci
.n

at
ur

e.
co

m

Reminder: Hierarchical Learning

news and views

nature neuroscience • volume 2 no 11 • november 1999 933

nition process are tied to the appearance
of objects as originally viewed — that is,
from a specific viewpoint in which an
object has actually appeared. In contrast,
the latter hold that the neural representa-
tions that form the basis of the recognition
process are organized into hierarchies of
features or parts that are either partially or
completely independent of any particular
viewpoint. Which approach better cap-
tures the body of extant results has been
the subject of heated debate over the past
several years1,2. Resolving this debate, how-
ever, has been rather difficult, in that the
best-specified theory, a structural-descrip-
tion model in which objects are repre-
sented as collections of 3D volumes3, is not
particularly consistent with either neural4

or behavioral5 data. On the other hand, the
strongest point in favor of view-based
models has been a set of experimentally-
generated phenomena4,5, rather than a
detailed theory that can account for these
data. Indeed, view-based models have
remained relatively simplistic entities
which do not generalize very well from
familiar to novel viewing conditions6. As
such, the current debate has reached a bit
of stalemate.

In this issue, Riesenhuber and Poggio7

present a new model that has the poten-
tial to remove the impasse. (Because their
term for the model — “hierarchical model
of object recognition” is rather cumber-
some, I have dubbed it ‘HMAX’ which
roughly stands for ‘Hierarchical Model
And X’ – where X is a highly non-linear
maXimum operation.) What they present
is a computational implementation of a
view-based theory of object recognition
that rests heavily on the functional archi-
tecture of the cortical temporal lobe
stream — the part of the brain that is
believed to mediate visual object recogni-
tion. The functional properties of this
neural pathway were first described by
Hubel and Wiesel8, who demonstrated
that information processing in this part
of visual cortex proceeds in a hierarchical
fashion. Specifically (see Fig. 1), the cor-
tical temporal lobe stream progresses from
local responses driven by simple stimulus
properties— for example, oriented lines
—to more global responses driven by
more complex stimulus properties — for
example, bars of particular lengths and
widths8. More recently, it has been
demonstrated that this hierarchy contin-
ues into inferotemporal cortex (IT), where
cells presumably combine the responses
of earlier cortical areas into highly specif-
ic pattern detectors — for example, neu-
rons that respond most strongly to

power to such systems, known views of a
given object or object class are not treat-
ed completely independently of one
another; rather they are ‘pooled’ to form
‘multiple-views’ object representations .
For example, in Poggio and Edelman’s
implementation6, a computational net-
work learned specific views of novel stim-
uli, but then was able to accurately
recognize the same stimuli in new view-
points by interpolating between the
appearance of two or more known views
for a particular object. Other view-based
models have proposed similar normal-
ization mechanisms, for instance, align-
ing a description of the input image with
a known view11 or accumulating evidence
across a set of viewpoint-specific feature
detectors12. For all of these models, the
critical prediction is progressively poor-
er generalization — in the form of either
weaker neural responses or diminished
recognition performance — with increas-
ing distance between a test view and any
known view of an object. At the same
time, whereas view-based models have
tacitly acknowledged that scale- and posi-
tion-invariance are desirable properties
that are suggested by the extant data, they
have not actually proposed mechanisms
for achieving either type of invariance.
Even worse, implementing such invari-
ances would be difficult given the kinds
of features typically used to construct
viewpoint-specific representations, for
example, the (X,Y) image coordinates of
an object’s vertices6. Indeed, the use of
such highly specific coding schemes led
to some of the strongest criticisms of

complex shapes9, individual faces10, or
objects4. Similarly, in HMAX, Riesenhu-
ber and Poggio implement a hierarchy of
conjunctions and disjunctions of pro-
gressively more and more complex feature
combinations, culminating in object-spe-
cific units that are ‘view-tuned’ — that is,
object representations that respond most
strongly to a single viewpoint. Corre-
spondingly, the same sensitivity to view-
point is found in the neurophysiology of
IT, where the vast majority of neurons
that are object-specific appear to respond
preferentially to a particular viewpoint
(although there are also some neurons
that respond equally well to any view)4,10.
At the same time, view-tuned cells typi-
cally respond in an invariant manner to
changes in size or distance. Thus, the chal-
lenge is to develop a theory that predicts
viewpoint-dependent performance for
recognizing known objects, but with lit-
tle or no scale- or position-dependence.

Riesenhuber and Poggio’s model
shows precisely this sort of response pat-
tern, being robust over changes in scale or
position — yet, as already mentioned, the
units coding for specific objects within
HMAX are highly viewpoint-dependent.
The primary reason for this behavior is
that HMAX relies on a non-linear maxi-
mum operation (‘MAX’) for combining
feature responses at one stage in order to
create more complex feature detectors at a
subsequent stage. In the model, the use of
the MAX operator means that the
strongest signal among features feeding
into a unit at the next layer will determine
the response of this unit. This method for
pooling responses also allows Riesenhu-
ber and Poggio’s model to perform well
even with images containing more than
one object. As with the pattern of
responses for feature detectors in HMAX,
the non-linear MAX mechanism for pool-
ing afferents seems to have an analog in
neurophysiology, possibly arising from
lateral inhibition between cells at each
processing stage.

In contrast to the wide explanatory
power of HMAX, this group’s earlier
model of visual recognition6 dealt almost
exclusively with techniques for using
viewpoint-specific object representations
to achieve viewpoint-invariant recogni-
tion. Their solution, typical of nearly all
instantiations of the view-based
approach1,5, was to encode multiple views
of each known object, so that almost any
new view would likely be near to a famil-
iar view. Consequently, recognition per-
formance would be relatively
viewpoint-invariant. Adding additional

Fig. 1. The temporal stream within visual cor-
tex processes information in a hierarchical fash-
ion. Earlier visual areas are most responsive to
simple stimulus patterns such as oriented lines.
In contrast, later visual areas such as inferotem-
poral cortex (IT) have recently been shown to
be sensitive to complex shapes or specific
objects in specific views. It is thought that these
more complex object representations are con-
structed out of progressively more and more
complex feature detectors.

View-tuned
cells

Complex

Simple

Bob Crimi

© 1999 Nature America Inc. • http://neurosci.nature.com

©
 1

99
9

N
at

ur
e

A
m

er
ic

a
In

c.
 •

ht
tp

://
ne

ur
os

ci
.n

at
ur

e.
co

m

V1

V2/V4

IT
Ventral Visual Stream

Reminder: Hierarchical Learning

Multi-Layer Perceptron228 5. NEURAL NETWORKS

Figure 5.1 Network diagram for the two-
layer neural network corre-
sponding to (5.7). The input,
hidden, and output variables
are represented by nodes, and
the weight parameters are rep-
resented by links between the
nodes, in which the bias pa-
rameters are denoted by links
coming from additional input
and hidden variables x0 and
z0. Arrows denote the direc-
tion of information flow through
the network during forward
propagation.

x0

x1

xD

z0

z1

zM

y1

yK

w(1)
MD w(2)

KM

w(2)
10

hidden units

inputs outputs

and follows the same considerations as for linear models discussed in Chapters 3 and
4. Thus for standard regression problems, the activation function is the identity so
that yk = ak. Similarly, for multiple binary classification problems, each output unit
activation is transformed using a logistic sigmoid function so that

yk = σ(ak) (5.5)

where
σ(a) =

1
1 + exp(−a)

. (5.6)

Finally, for multiclass problems, a softmax activation function of the form (4.62)
is used. The choice of output unit activation function is discussed in detail in Sec-
tion 5.2.

We can combine these various stages to give the overall network function that,
for sigmoidal output unit activation functions, takes the form

yk(x,w) = σ

(
M∑

j=1

w(2)
kj h

(
D∑

i=1

w(1)
ji xi + w(1)

j0

)
+ w(2)

k0

)
(5.7)

where the set of all weight and bias parameters have been grouped together into a
vector w. Thus the neural network model is simply a nonlinear function from a set
of input variables {xi} to a set of output variables {yk} controlled by a vector w of
adjustable parameters.

This function can be represented in the form of a network diagram as shown
in Figure 5.1. The process of evaluating (5.7) can then be interpreted as a forward
propagation of information through the network. It should be emphasized that these
diagrams do not represent probabilistic graphical models of the kind to be consid-
ered in Chapter 8 because the internal nodes represent deterministic variables rather
than stochastic ones. For this reason, we have adopted a slightly different graphical

Layer 1 - MLP

h() = non-linear function

z =

2

64
z1
...

zM

3

75

2

664

h[xT
w

(1)
1]

...

h[xT
w

(1)
M]

3

775

[w(1)
1 , . . . ,w(1)

M] = 1st layer’s D ⇥M weights

x = D ⇥ 1 raw input

Layer 2 - MLP

zTw(2) �
< 0

z 2 C1

z 2 C2

[65,09,67,.......,78,66,76,215]

x 2 RD

T

z 2 RM

z = M ⇥ 1 output of layer 1

w(2)
= 2nd layer’s M ⇥ 1 weight vector

Obvious Questions?

• How many layers?

• Is the solution globally optimal?

• What non-linearity should you use?

• What learning rate?

• How to should I estimate my gradients?

Obvious Questions?

• How many layers?

• Is the solution globally optimal?

• What non-linearity should you use?

• What learning rate?

• How to should I estimate my gradients?

Back-Propagation

2

64
w1
...

wK

3

75

2

64
w1
...

wK

3

75+ ⌘

2

664

@f(w)
@w1

...
@f(w)
@wK

3

775

Back-Propagation

2

64
w1
...

wK

3

75

2

64
w1
...

wK

3

75+ ⌘

2

664

@f(w)
@w1

...
@f(w)
@wK

3

775

Two Layer - Example

fn(w) =
1

2
||1� tn · zTnw(2)||22 +

�

2N
||w(2)||22

s.t. zn = [z1, . . . , zM]T

zm = h(xT
nw

(1)
m)

where h(x) =

1

1 + exp(�x)

,

@h(x)

@x

= 1� h(x)

2

-4 -3 -2 -1 0 1 2 3 4
-1

-0.5

0

0.5

1

x

h
(x
)

Two Layer - Example

From previous example we know for layer 2,

@fn(w)

@w(2)
= (zTnw

(2) � tn)zn +
�

N
w(2)

Two Layer - Example

Using the chain rule we can determine that,

@fn(w)

@w(1)
m

=
@fn(w)

@zm

@zm

@w(1)
m

Two Layer - Example

Using the chain rule we can determine that,

@fn(w)

@w(1)
m

=
@fn(w)

@zm

@zm

@w(1)
m

@fn(w)

@zm
= (zTnw

(2) � tn)w
(2)
m

Two Layer - Example

Using the chain rule we can determine that,

@fn(w)

@w(1)
m

=
@fn(w)

@zm

@zm

@w(1)
m

@fn(w)

@zm
= (zTnw

(2) � tn)w
(2)
m

@zm

@w(1)
m

= [1� h(xT
nw

(1)
m)2]xn

Back Propagation

@fn(w)

@w(2)
= (zTnw

(2) � tn)zn

Back Propagation

@fn(w)

@w(2)
= �nzn

Back Propagation

@fn(w)

@w(2)
= �nzn

@fn(w)

@zm
= (zTnw

(2) � tn)w
(2)
m

@fn(w)

@w(1)
m

=
@fn(w)

@zm

@zm

@w(1)
m

Back Propagation

@fn(w)

@w(2)
= �nzn

@fn(w)

@w(1)
m

=
@fn(w)

@zm

@zm

@w(1)
m

@fn(w)

@zm
= �nw

(2)
m

Back Propagation

@fn(w)

@w(2)
= �nzn

@fn(w)

@w(1)
m

=
@fn(w)

@zm

@zm

@w(1)
m

@fn(w)

@zm
= �nw

(2)
m

Back Propagation

• Back propagation refers to the property that components of
gradients found at higher layers, can be re-used at lower
layers.

244 5. NEURAL NETWORKS

Figure 5.7 Illustration of the calculation of δj for hidden unit j by
backpropagation of the δ’s from those units k to which
unit j sends connections. The blue arrow denotes the
direction of information flow during forward propagation,
and the red arrows indicate the backward propagation
of error information.

zi

zj

δj
δk

δ1

wji wkj

provided we are using the canonical link as the output-unit activation function. To
evaluate the δ’s for hidden units, we again make use of the chain rule for partial
derivatives,

δj ≡ ∂En

∂aj
=

∑

k

∂En

∂ak

∂ak

∂aj
(5.55)

where the sum runs over all units k to which unit j sends connections. The arrange-
ment of units and weights is illustrated in Figure 5.7. Note that the units labelled k
could include other hidden units and/or output units. In writing down (5.55), we are
making use of the fact that variations in aj give rise to variations in the error func-
tion only through variations in the variables ak. If we now substitute the definition
of δ given by (5.51) into (5.55), and make use of (5.48) and (5.49), we obtain the
following backpropagation formula

δj = h′(aj)
∑

k

wkjδk (5.56)

which tells us that the value of δ for a particular hidden unit can be obtained by
propagating the δ’s backwards from units higher up in the network, as illustrated
in Figure 5.7. Note that the summation in (5.56) is taken over the first index on
wkj (corresponding to backward propagation of information through the network),
whereas in the forward propagation equation (5.10) it is taken over the second index.
Because we already know the values of the δ’s for the output units, it follows that
by recursively applying (5.56) we can evaluate the δ’s for all of the hidden units in a
feed-forward network, regardless of its topology.

The backpropagation procedure can therefore be summarized as follows.

Error Backpropagation

1. Apply an input vector xn to the network and forward propagate through
the network using (5.48) and (5.49) to find the activations of all the hidden
and output units.

2. Evaluate the δk for all the output units using (5.54).

3. Backpropagate the δ’s using (5.56) to obtain δj for each hidden unit in the
network.

4. Use (5.53) to evaluate the required derivatives.

Multiple LayersNeural'networks:'architectures

“2Player!neural!net,”!or!
“1PhiddenPlayer!neural!net”!

“3Player!neural!net,”!or!
“2PhiddenPlayer!neural!net”!

Today

• Single-Layer Perceptron

• Multi-Layer Perceptron

• Convolutional Neural Network

Filter Bank

In the Pursuit of Effective Affective Computing:
Are Features Necessary?

Abstract— All facial expression recognition systems require
some geometric alignment of the face intensity image before
the classification process can occur. Ideally, one would attempt
to perform a “dense” alignment, where a large number (e.g.,
60-70) of fiducial points on the face image are accurately
detected with high accuracy. Up until recently, this type of
dense alignment, however, has been problematic due to poor
reliability and robustness. Instead, many expression detection
methods have relied on a two tier strategy of: (i) employing
a “coarse” alignment where only a few (e.g., 3-4) points on
the face are detected with relatively poor accuracy but high
reliability and robustness, and (ii) using a feature/descriptor
based representation of the coarsely registered image such as
Histogram of Orientated Gradients (HOG) or Gabor magni-
tudes. Recently, however, a number of new algorithms for face
alignment have demonstrated both dense alignment with high
reliability and accuracy (e.g. Constrained Local Models), which
begs the question: what do these features do that standard
pixel representations do not? In this paper we show that when
close to perfect alignment is obtained, there is no real benefit
in employing these different appearance-based representations
in consistent conditions. However, we show that when there is
misalignment these features do work well by encoding robustess
to alignment error. For this work, we compared two automatic
approaches to dense face alignment, subject-dependent (i.e.
active appearance models (AAMs)) vs subject-independent (i.e.
Constrained Local Model (CLM)) and conducted a battery of
experiments across various datasets (i.e. CK+, Pain, RUFACS
and GEMEP) to quantify these effects.

I. INTRODUCTION
Research into affective computing has been very active

over the past decade, mainly due to the vast number of appli-
cations in which it could be useful in (i.e. marketing, human-
computer-interaction, health-care, security, behavioral sci-
ence, car safety etc.). The main goal of this research is
to have a computer system being able to automatically
detect/infer the emotional state of any person based on
various modes (i.e. face, voice, body, actions) in real-time.

The majority of this work has centered on the task of facial
expression detection, mostly by way of individual action unit
(AU) detection. The popular approach to this has been to
first locate and track a person’s face and facial features,
derive a feature representation of the face and then classify
whether or not a frame contains the AU of interest or not
(see Figure 1). In terms of face alignment, this can be done
either coarsely through tracking a couple of key features (i.e.
Viola & Jones [1] type approach where the face and eyes are
tracked) or highly accurately via a deformable model type
approach where a dense mesh of 60-70 points on the face is
used. The latter is desired due to this accuracy in addition
to their ability to infer the 3D pose parameters (i.e. pitch,
yaw and roll) and features (i.e. synthesize frontal view),

PAMI DRAFT - 2009 4

u

v

(1,1)

...

x

y ...

x

y ...

(2,2)

...

...

...

(3,3)

...

...

...

(4,4)

Fig. 1. Visualization of Gabor filter banks in spatial and Fourier domains. The above figure shows individual Gabor filters stemming
from a 4x4 coverage of the spectrum, with each individual filter corresponding to a different orientation and scale. Row 1: Frequency
domain Gabor filters. Row 2: Spatial domain Even filters. Row 3: Spatial domain Odd filters.

referred to as Parseval’s relation which states that,

xT
i xj = x̂T

i x̂j⇥i, j (12)

given that we assume our complex 2D-DFT basis F is or-
thonormal. Based on this formulation learning a linear SVM
in the spatial or Fourier domain should be identical.

5 RE-INTERPRETING LINEAR FILTERS
Taking the results from Sections 3 and 4 it is possible to
re-interpret the learning of an SVM with concatenated filter
responses zi in the spatial domain as being equivalent to
learning the support weight vector � in the dual problem,

max
0⇥�i⇥C

l⇤

i=1

�i �
1
2

l⇤

i=1

l⇤

j=1

�i�jyiyjx̂T
i Sx̂j (13)

subject to
l⇤

i=1

yi�i = 0

where x̂i is the 2D-DFT of the vectorized training image xi

and S is the diagonal weighting matrix of filters estimated in
Equation 8. Equivalently, one can view the prime problem as,

min
ŵ

1
2
ŵTS�1ŵ + C

l⇤

i=1

[1� yiŵT x̂i]+ (14)

where we can now view the SVM as attempting to maximize
the weighted Euclidean distance margin, inversely proportional
to ŵTS�1ŵ, in a N dimensional Fourier space. This is in
contrast to the canonical viewpoint that attempts to maximize
the Euclidean distance margin for an SVM in a NM dimen-
sional spatial filter response space. A major disadvantage to
the latter viewpoint is that memory storage and computational
cost are directly linked to the number of filter banks M
being employed. In our new viewpoint the matrix S can be
pre-computed before learning, making the equivalent learning
process now independent of M . It is interesting to note that in

Equation 14 we are only manipulating the margin term, while
the form of the hinge error term remains the same.

5.1 Training with Complex Vectors
One problem, however, with our proposed computationally
efficient approach to learning a Gabor filtered linear SVM
is that learning has to occur in the Fourier rather than the
spatial domain. This means that an SVM has to be learnt
using complex (real and imaginary) vectors rather than just
real vectors obtained from the spatial image domain. At first
glance learning an SVM with complex Fourier vectors may
seem problematic and require SVM software specifically for
learning in the Fourier domain as: (i) in general the inner prod-
uct between two complex vectors is itself a complex number,
and (ii) most existing SVM packages (e.g., LibSVM [16]) can
handle only real vectors during training.
Fortunately, the first problem can be automatically circum-

vented through Parseval’s relation which guarantees that the
inner product in the Fourier domain is equivalent to the inner
product in the spatial domain. Since the spatial images are all
real, then the inner product in the Fourier domain must also
be real. The second problem can also be easily circumvented
through the realization that for any two Fourier complex
vectors x̂i and x̂j derived from spatial signals/images xi

and xj respectively the following equivalence holds,

x̂T
i x̂j =

�
Re{x̂i}
Im{x̂i}

⇥T �
Re{x̂j}
Im{x̂j}

⇥
(15)

a proof of this equivalence can be found in the Appendix.
Based on this equivalence one can replace any N dimensional
complex Fourier vector, equivalently, with a 2N dimensional
real vector where the real and imaginary components have
been concatenated into a single vector. Since the inner products
will be identical, according to the dual of the SVM objective
function, the estimated support weights should be identical.
This equivalence greatly simplifies the learning of the linear

3.3. TRAINING APPLICATIONS 43

Figure 3.2: AFERS at various states. Row-wise from top-left to bottom-right:
Initial display, neutral, joy, disgust, surprise, contempt.

(a) (b) (c)

(a) (b)

(d)

Monday, September 27, 2010

Fig. 1: Most facial expression systems (a) align the face and
facial features (i.e. either coarse registration (i.e. face and eyes)
or deformable models using dense mesh (i.e. subject-dependent
approach (AAM) or subject-independent approach (CLM). After
tracking, an image of the face is obtained and this image may
or may not be post-processed (b) (e.g. Gabor filter bank) to
gain a feature representation (c). These features are then used for
classifcation (d).

which is ideal in situations where there is a lot of head
movement, especially out-of-plane head rotations. Subject-
dependent active appearance models (AAMs) [2], [3] have
been widely used in this field [4], [5], [6], [7] for those
reasons but this approach requires manual labeling of key
frames of the target sequence (up to 5% of frames). For
applications where manually labeling frames is prohibitive
(e.g. marketing, security/law enforcement, health-care and
HCI), a more generic or subject-independent face alignment
approach is required. One such approach is the constrained
local model (CLM) method developed by Saragih et al. [8].
The CLM leverages the generalization capacity of local patch
experts and the constraint over joint deformation provided by
a point distribution model (PDM). It is similar to AAMs in
the fact that it tracks a dense mesh of points on the face that
produce both shape and appearance features, but through the
utilization of these patches it has been shown to work well
for the subject-independent case (i.e. unseen subjects).

Once the face has been tracked, the normal convention is
to apply a bank of filters, followed by a rectification step,
contrast normalization, and then a pooling/subsampling strat-
egy. For example, the popular Histogram of Orientated Gra-
dients (HOG) [9], [10], [11], [12], and Gabor magnitude [11],
[12], [13] descriptors readily fit into this parametric form.
These features have been widely used due to their biological
relevance, their ability to encode edges and texture, and their
invariance to illumination. An inherent problem with this
method is the large memory and computational overheads
required for training and testing these filter banks. Other
than cases where their is extreme illumination variation,
which is unlikely for the vast majority of applications of this
technology at the moment (i.e. the environment should be

RectificationFilter Bank

|| . ||

Pooling

local average

"coarse"
"alignment"
"warping"

"dense"
"alignment"
"warping"

In the Pursuit of Effective Affective Computing:
Are Features Necessary?

Abstract— All facial expression recognition systems require
some geometric alignment of the face intensity image before
the classification process can occur. Ideally, one would attempt
to perform a “dense” alignment, where a large number (e.g.,
60-70) of fiducial points on the face image are accurately
detected with high accuracy. Up until recently, this type of
dense alignment, however, has been problematic due to poor
reliability and robustness. Instead, many expression detection
methods have relied on a two tier strategy of: (i) employing
a “coarse” alignment where only a few (e.g., 3-4) points on
the face are detected with relatively poor accuracy but high
reliability and robustness, and (ii) using a feature/descriptor
based representation of the coarsely registered image such as
Histogram of Orientated Gradients (HOG) or Gabor magni-
tudes. Recently, however, a number of new algorithms for face
alignment have demonstrated both dense alignment with high
reliability and accuracy (e.g. Constrained Local Models), which
begs the question: what do these features do that standard
pixel representations do not? In this paper we show that when
close to perfect alignment is obtained, there is no real benefit
in employing these different appearance-based representations
in consistent conditions. However, we show that when there is
misalignment these features do work well by encoding robustess
to alignment error. For this work, we compared two automatic
approaches to dense face alignment, subject-dependent (i.e.
active appearance models (AAMs)) vs subject-independent (i.e.
Constrained Local Model (CLM)) and conducted a battery of
experiments across various datasets (i.e. CK+, Pain, RUFACS
and GEMEP) to quantify these effects.

I. INTRODUCTION
Research into affective computing has been very active

over the past decade, mainly due to the vast number of appli-
cations in which it could be useful in (i.e. marketing, human-
computer-interaction, health-care, security, behavioral sci-
ence, car safety etc.). The main goal of this research is
to have a computer system being able to automatically
detect/infer the emotional state of any person based on
various modes (i.e. face, voice, body, actions) in real-time.

The majority of this work has centered on the task of facial
expression detection, mostly by way of individual action unit
(AU) detection. The popular approach to this has been to
first locate and track a person’s face and facial features,
derive a feature representation of the face and then classify
whether or not a frame contains the AU of interest or not
(see Figure 1). In terms of face alignment, this can be done
either coarsely through tracking a couple of key features (i.e.
Viola & Jones [1] type approach where the face and eyes are
tracked) or highly accurately via a deformable model type
approach where a dense mesh of 60-70 points on the face is
used. The latter is desired due to this accuracy in addition
to their ability to infer the 3D pose parameters (i.e. pitch,
yaw and roll) and features (i.e. synthesize frontal view),

PAMI DRAFT - 2009 4

u

v

(1,1)

...

x

y ...

x

y ...

(2,2)

...

...

...

(3,3)

...

...

...

(4,4)

Fig. 1. Visualization of Gabor filter banks in spatial and Fourier domains. The above figure shows individual Gabor filters stemming
from a 4x4 coverage of the spectrum, with each individual filter corresponding to a different orientation and scale. Row 1: Frequency
domain Gabor filters. Row 2: Spatial domain Even filters. Row 3: Spatial domain Odd filters.

referred to as Parseval’s relation which states that,

xT
i xj = x̂T

i x̂j⇥i, j (12)

given that we assume our complex 2D-DFT basis F is or-
thonormal. Based on this formulation learning a linear SVM
in the spatial or Fourier domain should be identical.

5 RE-INTERPRETING LINEAR FILTERS
Taking the results from Sections 3 and 4 it is possible to
re-interpret the learning of an SVM with concatenated filter
responses zi in the spatial domain as being equivalent to
learning the support weight vector � in the dual problem,

max
0⇥�i⇥C

l⇤

i=1

�i �
1
2

l⇤

i=1

l⇤

j=1

�i�jyiyjx̂T
i Sx̂j (13)

subject to
l⇤

i=1

yi�i = 0

where x̂i is the 2D-DFT of the vectorized training image xi

and S is the diagonal weighting matrix of filters estimated in
Equation 8. Equivalently, one can view the prime problem as,

min
ŵ

1
2
ŵTS�1ŵ + C

l⇤

i=1

[1� yiŵT x̂i]+ (14)

where we can now view the SVM as attempting to maximize
the weighted Euclidean distance margin, inversely proportional
to ŵTS�1ŵ, in a N dimensional Fourier space. This is in
contrast to the canonical viewpoint that attempts to maximize
the Euclidean distance margin for an SVM in a NM dimen-
sional spatial filter response space. A major disadvantage to
the latter viewpoint is that memory storage and computational
cost are directly linked to the number of filter banks M
being employed. In our new viewpoint the matrix S can be
pre-computed before learning, making the equivalent learning
process now independent of M . It is interesting to note that in

Equation 14 we are only manipulating the margin term, while
the form of the hinge error term remains the same.

5.1 Training with Complex Vectors
One problem, however, with our proposed computationally
efficient approach to learning a Gabor filtered linear SVM
is that learning has to occur in the Fourier rather than the
spatial domain. This means that an SVM has to be learnt
using complex (real and imaginary) vectors rather than just
real vectors obtained from the spatial image domain. At first
glance learning an SVM with complex Fourier vectors may
seem problematic and require SVM software specifically for
learning in the Fourier domain as: (i) in general the inner prod-
uct between two complex vectors is itself a complex number,
and (ii) most existing SVM packages (e.g., LibSVM [16]) can
handle only real vectors during training.
Fortunately, the first problem can be automatically circum-

vented through Parseval’s relation which guarantees that the
inner product in the Fourier domain is equivalent to the inner
product in the spatial domain. Since the spatial images are all
real, then the inner product in the Fourier domain must also
be real. The second problem can also be easily circumvented
through the realization that for any two Fourier complex
vectors x̂i and x̂j derived from spatial signals/images xi

and xj respectively the following equivalence holds,

x̂T
i x̂j =

�
Re{x̂i}
Im{x̂i}

⇥T �
Re{x̂j}
Im{x̂j}

⇥
(15)

a proof of this equivalence can be found in the Appendix.
Based on this equivalence one can replace any N dimensional
complex Fourier vector, equivalently, with a 2N dimensional
real vector where the real and imaginary components have
been concatenated into a single vector. Since the inner products
will be identical, according to the dual of the SVM objective
function, the estimated support weights should be identical.
This equivalence greatly simplifies the learning of the linear

3.3. TRAINING APPLICATIONS 43

Figure 3.2: AFERS at various states. Row-wise from top-left to bottom-right:
Initial display, neutral, joy, disgust, surprise, contempt.

(a) (b) (c)

(a) (b)

(d)

Monday, September 27, 2010

Fig. 1: Most facial expression systems (a) align the face and
facial features (i.e. either coarse registration (i.e. face and eyes)
or deformable models using dense mesh (i.e. subject-dependent
approach (AAM) or subject-independent approach (CLM). After
tracking, an image of the face is obtained and this image may
or may not be post-processed (b) (e.g. Gabor filter bank) to
gain a feature representation (c). These features are then used for
classifcation (d).

which is ideal in situations where there is a lot of head
movement, especially out-of-plane head rotations. Subject-
dependent active appearance models (AAMs) [2], [3] have
been widely used in this field [4], [5], [6], [7] for those
reasons but this approach requires manual labeling of key
frames of the target sequence (up to 5% of frames). For
applications where manually labeling frames is prohibitive
(e.g. marketing, security/law enforcement, health-care and
HCI), a more generic or subject-independent face alignment
approach is required. One such approach is the constrained
local model (CLM) method developed by Saragih et al. [8].
The CLM leverages the generalization capacity of local patch
experts and the constraint over joint deformation provided by
a point distribution model (PDM). It is similar to AAMs in
the fact that it tracks a dense mesh of points on the face that
produce both shape and appearance features, but through the
utilization of these patches it has been shown to work well
for the subject-independent case (i.e. unseen subjects).

Once the face has been tracked, the normal convention is
to apply a bank of filters, followed by a rectification step,
contrast normalization, and then a pooling/subsampling strat-
egy. For example, the popular Histogram of Orientated Gra-
dients (HOG) [9], [10], [11], [12], and Gabor magnitude [11],
[12], [13] descriptors readily fit into this parametric form.
These features have been widely used due to their biological
relevance, their ability to encode edges and texture, and their
invariance to illumination. An inherent problem with this
method is the large memory and computational overheads
required for training and testing these filter banks. Other
than cases where their is extreme illumination variation,
which is unlikely for the vast majority of applications of this
technology at the moment (i.e. the environment should be

Linear SVM

(b)

(a)

x � RDx � RD

refer to (i) and (ii) as representation 2DS-NS and 2DS-
A respectively.

2DA: 2D appearance, A(u) representation (see Equation
(2)) of the appearance of the face given a static mean
shape.

3DS: 3D shape, s representation (see Equation (3)) where
the position in 3D of the face and its facial features has
been estimated. Normalization is applied through the
removal of the similarity transform in 3D (i.e. remove
3D translation, scale and rotation).

2DS

2DA

3DSWarp to
mean shape

Figure 2: AAM Derived features. The AAM tracked result is used
to compute the 2D shape, the shape-free appearance, and the 3D
shape.

5. Classifiers
In this paper, since we are dealing with peak-to-peak recog-
nition, we explored two commonly used classifiers for facial
action recognition [3, 6].

5.1. Nearest Neighbor (NN)
Nearest neighbor (NN) classifiers are typically employed in
scenarios where there are many classes, and there is a mini-
mal amount of training observations for each class (e.g. face
recognition); making them well suited for the task of facial
action recognition. A NN classifier seeks to find of N la-
beled train observations {oi}N

i=1 the single closest observa-
tion to the unlabeled test observation o∗; classifying o∗ as
having the nearest neighbor’s label.

When N is small the choice of distance metric D(a,b)
between observation points becomes especially impor-
tant [12]. One of the most common distance metrics em-
ployed in face recognition and facial action recognition is
the Mahalanobis distance,

D(a,b) = (a − b)T W(a − b) (5)

where a and b are observation vectors being compared
and W is a weighting matrix. It is often advantageous to

attempt to learn W from the train-set. Two common ap-
proaches to learn W are,

Principal Component Analysis (PCA): attempts to find
the K eigenvectors V = {vk}K

k=1, corresponding to
the K largest eigenvalues, of the train-set’s covari-
ance matrix. These K eigenvectors can be thought
of as the K largest modes of linear variation in the
train-set. The weighting matrix can then be defined
as W = VVT . Typically, K << N thereby con-
straining the matching of a and b to a subspace where
training observations have previously spanned.

Linear Discriminant Analysis (LDA): attempts to find
the K eigenvectors V = {vk}K

k=1 of SbS−1
w where Sb

and Sw are the within- and between- class scatter ma-
trices of the train-set. These K eigenvectors can be
thought of as the K largest modes of discrimination
in the train-set. Since SbS−1

w is not symmetrical, we
must employ simultaneous diagonalization [12] to find
the solution. PCA is typically applied before LDA, es-
pecially if the dimensionality of the raw face represen-
tations is large, so as to minimize sample-size noise.

If there is not enough training data and many classes
LDA overfits and can perform poorly, on the other hand
PCA could not be discriminative enough if two classes span
a similar subspace. For the purposes of this paper PCA used
in conjunction with LDA was found to be most suitable for
the task of facial action recognition; we shall refer to this
classifier as NN-LDA.

5.2. Support Vector Machine (SVM)
Support vector machines (SVMs) have been demonstrated
to be extremely useful in a number of pattern recognition
tasks including face and facial action recognition. This type
of classifier attempts to find the hyper-plane that maximizes
the margin between positive and negative observations for
a specified class. A linear SVM classification decision is
made for an unlabeled test observation o∗ by,

wT o∗
true
≷

false
b (6)

where w is the vector normal to the separating hyperplane
and b is the bias. Both w and b were estimated so that they
minimize the structural risk of a train-set. Typically, w is
not defined explicitly, but through a linear sum of support
vectors. As a result SVMs offer additional appeal as they
allow for the employment of non-linear combination func-
tions through the use of kernel functions such as the radial
basis function (RBF), polynomial, sigmoid kernels. A RBF
kernel was used in our experiments throughout this paper

!"#$%%&'()*+#,+-.%+/-.+0(-%"(1-'#(12+3#(,%"%($%+#(+45-#61-'$+71$%+1(&+8%*-5"%+9%$#)('-'#(+:789;<=>+

<?/=@A?BA<C?BD<=+EB<F<<+G+B<<=!!"""#

refer to (i) and (ii) as representation 2DS-NS and 2DS-
A respectively.

2DA: 2D appearance, A(u) representation (see Equation
(2)) of the appearance of the face given a static mean
shape.

3DS: 3D shape, s representation (see Equation (3)) where
the position in 3D of the face and its facial features has
been estimated. Normalization is applied through the
removal of the similarity transform in 3D (i.e. remove
3D translation, scale and rotation).

2DS

2DA

3DSWarp to
mean shape

Figure 2: AAM Derived features. The AAM tracked result is used
to compute the 2D shape, the shape-free appearance, and the 3D
shape.

5. Classifiers
In this paper, since we are dealing with peak-to-peak recog-
nition, we explored two commonly used classifiers for facial
action recognition [3, 6].

5.1. Nearest Neighbor (NN)
Nearest neighbor (NN) classifiers are typically employed in
scenarios where there are many classes, and there is a mini-
mal amount of training observations for each class (e.g. face
recognition); making them well suited for the task of facial
action recognition. A NN classifier seeks to find of N la-
beled train observations {oi}N

i=1 the single closest observa-
tion to the unlabeled test observation o∗; classifying o∗ as
having the nearest neighbor’s label.

When N is small the choice of distance metric D(a,b)
between observation points becomes especially impor-
tant [12]. One of the most common distance metrics em-
ployed in face recognition and facial action recognition is
the Mahalanobis distance,

D(a,b) = (a − b)T W(a − b) (5)

where a and b are observation vectors being compared
and W is a weighting matrix. It is often advantageous to

attempt to learn W from the train-set. Two common ap-
proaches to learn W are,

Principal Component Analysis (PCA): attempts to find
the K eigenvectors V = {vk}K

k=1, corresponding to
the K largest eigenvalues, of the train-set’s covari-
ance matrix. These K eigenvectors can be thought
of as the K largest modes of linear variation in the
train-set. The weighting matrix can then be defined
as W = VVT . Typically, K << N thereby con-
straining the matching of a and b to a subspace where
training observations have previously spanned.

Linear Discriminant Analysis (LDA): attempts to find
the K eigenvectors V = {vk}K

k=1 of SbS−1
w where Sb

and Sw are the within- and between- class scatter ma-
trices of the train-set. These K eigenvectors can be
thought of as the K largest modes of discrimination
in the train-set. Since SbS−1

w is not symmetrical, we
must employ simultaneous diagonalization [12] to find
the solution. PCA is typically applied before LDA, es-
pecially if the dimensionality of the raw face represen-
tations is large, so as to minimize sample-size noise.

If there is not enough training data and many classes
LDA overfits and can perform poorly, on the other hand
PCA could not be discriminative enough if two classes span
a similar subspace. For the purposes of this paper PCA used
in conjunction with LDA was found to be most suitable for
the task of facial action recognition; we shall refer to this
classifier as NN-LDA.

5.2. Support Vector Machine (SVM)
Support vector machines (SVMs) have been demonstrated
to be extremely useful in a number of pattern recognition
tasks including face and facial action recognition. This type
of classifier attempts to find the hyper-plane that maximizes
the margin between positive and negative observations for
a specified class. A linear SVM classification decision is
made for an unlabeled test observation o∗ by,

wT o∗
true
≷

false
b (6)

where w is the vector normal to the separating hyperplane
and b is the bias. Both w and b were estimated so that they
minimize the structural risk of a train-set. Typically, w is
not defined explicitly, but through a linear sum of support
vectors. As a result SVMs offer additional appeal as they
allow for the employment of non-linear combination func-
tions through the use of kernel functions such as the radial
basis function (RBF), polynomial, sigmoid kernels. A RBF
kernel was used in our experiments throughout this paper

!"#$%%&'()*+#,+-.%+/-.+0(-%"(1-'#(12+3#(,%"%($%+#(+45-#61-'$+71$%+1(&+8%*-5"%+9%$#)('-'#(+:789;<=>+

<?/=@A?BA<C?BD<=+EB<F<<+G+B<<=!!"""#

Pinto et al. 2008
Hubel & Wiesel 1962
Serre & Poggio 2007

Lowe 1999

Filter Bank

In the Pursuit of Effective Affective Computing:
Are Features Necessary?

Abstract— All facial expression recognition systems require
some geometric alignment of the face intensity image before
the classification process can occur. Ideally, one would attempt
to perform a “dense” alignment, where a large number (e.g.,
60-70) of fiducial points on the face image are accurately
detected with high accuracy. Up until recently, this type of
dense alignment, however, has been problematic due to poor
reliability and robustness. Instead, many expression detection
methods have relied on a two tier strategy of: (i) employing
a “coarse” alignment where only a few (e.g., 3-4) points on
the face are detected with relatively poor accuracy but high
reliability and robustness, and (ii) using a feature/descriptor
based representation of the coarsely registered image such as
Histogram of Orientated Gradients (HOG) or Gabor magni-
tudes. Recently, however, a number of new algorithms for face
alignment have demonstrated both dense alignment with high
reliability and accuracy (e.g. Constrained Local Models), which
begs the question: what do these features do that standard
pixel representations do not? In this paper we show that when
close to perfect alignment is obtained, there is no real benefit
in employing these different appearance-based representations
in consistent conditions. However, we show that when there is
misalignment these features do work well by encoding robustess
to alignment error. For this work, we compared two automatic
approaches to dense face alignment, subject-dependent (i.e.
active appearance models (AAMs)) vs subject-independent (i.e.
Constrained Local Model (CLM)) and conducted a battery of
experiments across various datasets (i.e. CK+, Pain, RUFACS
and GEMEP) to quantify these effects.

I. INTRODUCTION
Research into affective computing has been very active

over the past decade, mainly due to the vast number of appli-
cations in which it could be useful in (i.e. marketing, human-
computer-interaction, health-care, security, behavioral sci-
ence, car safety etc.). The main goal of this research is
to have a computer system being able to automatically
detect/infer the emotional state of any person based on
various modes (i.e. face, voice, body, actions) in real-time.

The majority of this work has centered on the task of facial
expression detection, mostly by way of individual action unit
(AU) detection. The popular approach to this has been to
first locate and track a person’s face and facial features,
derive a feature representation of the face and then classify
whether or not a frame contains the AU of interest or not
(see Figure 1). In terms of face alignment, this can be done
either coarsely through tracking a couple of key features (i.e.
Viola & Jones [1] type approach where the face and eyes are
tracked) or highly accurately via a deformable model type
approach where a dense mesh of 60-70 points on the face is
used. The latter is desired due to this accuracy in addition
to their ability to infer the 3D pose parameters (i.e. pitch,
yaw and roll) and features (i.e. synthesize frontal view),

PAMI DRAFT - 2009 4

u

v

(1,1)

...

x

y ...

x

y ...

(2,2)

...

...

...

(3,3)

...

...

...

(4,4)

Fig. 1. Visualization of Gabor filter banks in spatial and Fourier domains. The above figure shows individual Gabor filters stemming
from a 4x4 coverage of the spectrum, with each individual filter corresponding to a different orientation and scale. Row 1: Frequency
domain Gabor filters. Row 2: Spatial domain Even filters. Row 3: Spatial domain Odd filters.

referred to as Parseval’s relation which states that,

xT
i xj = x̂T

i x̂j⇥i, j (12)

given that we assume our complex 2D-DFT basis F is or-
thonormal. Based on this formulation learning a linear SVM
in the spatial or Fourier domain should be identical.

5 RE-INTERPRETING LINEAR FILTERS
Taking the results from Sections 3 and 4 it is possible to
re-interpret the learning of an SVM with concatenated filter
responses zi in the spatial domain as being equivalent to
learning the support weight vector � in the dual problem,

max
0⇥�i⇥C

l⇤

i=1

�i �
1
2

l⇤

i=1

l⇤

j=1

�i�jyiyjx̂T
i Sx̂j (13)

subject to
l⇤

i=1

yi�i = 0

where x̂i is the 2D-DFT of the vectorized training image xi

and S is the diagonal weighting matrix of filters estimated in
Equation 8. Equivalently, one can view the prime problem as,

min
ŵ

1
2
ŵTS�1ŵ + C

l⇤

i=1

[1� yiŵT x̂i]+ (14)

where we can now view the SVM as attempting to maximize
the weighted Euclidean distance margin, inversely proportional
to ŵTS�1ŵ, in a N dimensional Fourier space. This is in
contrast to the canonical viewpoint that attempts to maximize
the Euclidean distance margin for an SVM in a NM dimen-
sional spatial filter response space. A major disadvantage to
the latter viewpoint is that memory storage and computational
cost are directly linked to the number of filter banks M
being employed. In our new viewpoint the matrix S can be
pre-computed before learning, making the equivalent learning
process now independent of M . It is interesting to note that in

Equation 14 we are only manipulating the margin term, while
the form of the hinge error term remains the same.

5.1 Training with Complex Vectors
One problem, however, with our proposed computationally
efficient approach to learning a Gabor filtered linear SVM
is that learning has to occur in the Fourier rather than the
spatial domain. This means that an SVM has to be learnt
using complex (real and imaginary) vectors rather than just
real vectors obtained from the spatial image domain. At first
glance learning an SVM with complex Fourier vectors may
seem problematic and require SVM software specifically for
learning in the Fourier domain as: (i) in general the inner prod-
uct between two complex vectors is itself a complex number,
and (ii) most existing SVM packages (e.g., LibSVM [16]) can
handle only real vectors during training.
Fortunately, the first problem can be automatically circum-

vented through Parseval’s relation which guarantees that the
inner product in the Fourier domain is equivalent to the inner
product in the spatial domain. Since the spatial images are all
real, then the inner product in the Fourier domain must also
be real. The second problem can also be easily circumvented
through the realization that for any two Fourier complex
vectors x̂i and x̂j derived from spatial signals/images xi

and xj respectively the following equivalence holds,

x̂T
i x̂j =

�
Re{x̂i}
Im{x̂i}

⇥T �
Re{x̂j}
Im{x̂j}

⇥
(15)

a proof of this equivalence can be found in the Appendix.
Based on this equivalence one can replace any N dimensional
complex Fourier vector, equivalently, with a 2N dimensional
real vector where the real and imaginary components have
been concatenated into a single vector. Since the inner products
will be identical, according to the dual of the SVM objective
function, the estimated support weights should be identical.
This equivalence greatly simplifies the learning of the linear

3.3. TRAINING APPLICATIONS 43

Figure 3.2: AFERS at various states. Row-wise from top-left to bottom-right:
Initial display, neutral, joy, disgust, surprise, contempt.

(a) (b) (c)

(a) (b)

(d)

Monday, September 27, 2010

Fig. 1: Most facial expression systems (a) align the face and
facial features (i.e. either coarse registration (i.e. face and eyes)
or deformable models using dense mesh (i.e. subject-dependent
approach (AAM) or subject-independent approach (CLM). After
tracking, an image of the face is obtained and this image may
or may not be post-processed (b) (e.g. Gabor filter bank) to
gain a feature representation (c). These features are then used for
classifcation (d).

which is ideal in situations where there is a lot of head
movement, especially out-of-plane head rotations. Subject-
dependent active appearance models (AAMs) [2], [3] have
been widely used in this field [4], [5], [6], [7] for those
reasons but this approach requires manual labeling of key
frames of the target sequence (up to 5% of frames). For
applications where manually labeling frames is prohibitive
(e.g. marketing, security/law enforcement, health-care and
HCI), a more generic or subject-independent face alignment
approach is required. One such approach is the constrained
local model (CLM) method developed by Saragih et al. [8].
The CLM leverages the generalization capacity of local patch
experts and the constraint over joint deformation provided by
a point distribution model (PDM). It is similar to AAMs in
the fact that it tracks a dense mesh of points on the face that
produce both shape and appearance features, but through the
utilization of these patches it has been shown to work well
for the subject-independent case (i.e. unseen subjects).

Once the face has been tracked, the normal convention is
to apply a bank of filters, followed by a rectification step,
contrast normalization, and then a pooling/subsampling strat-
egy. For example, the popular Histogram of Orientated Gra-
dients (HOG) [9], [10], [11], [12], and Gabor magnitude [11],
[12], [13] descriptors readily fit into this parametric form.
These features have been widely used due to their biological
relevance, their ability to encode edges and texture, and their
invariance to illumination. An inherent problem with this
method is the large memory and computational overheads
required for training and testing these filter banks. Other
than cases where their is extreme illumination variation,
which is unlikely for the vast majority of applications of this
technology at the moment (i.e. the environment should be

RectificationFilter Bank

|| . ||

Pooling

local average

"coarse"
"alignment"
"warping"

"dense"
"alignment"
"warping"

In the Pursuit of Effective Affective Computing:
Are Features Necessary?

Abstract— All facial expression recognition systems require
some geometric alignment of the face intensity image before
the classification process can occur. Ideally, one would attempt
to perform a “dense” alignment, where a large number (e.g.,
60-70) of fiducial points on the face image are accurately
detected with high accuracy. Up until recently, this type of
dense alignment, however, has been problematic due to poor
reliability and robustness. Instead, many expression detection
methods have relied on a two tier strategy of: (i) employing
a “coarse” alignment where only a few (e.g., 3-4) points on
the face are detected with relatively poor accuracy but high
reliability and robustness, and (ii) using a feature/descriptor
based representation of the coarsely registered image such as
Histogram of Orientated Gradients (HOG) or Gabor magni-
tudes. Recently, however, a number of new algorithms for face
alignment have demonstrated both dense alignment with high
reliability and accuracy (e.g. Constrained Local Models), which
begs the question: what do these features do that standard
pixel representations do not? In this paper we show that when
close to perfect alignment is obtained, there is no real benefit
in employing these different appearance-based representations
in consistent conditions. However, we show that when there is
misalignment these features do work well by encoding robustess
to alignment error. For this work, we compared two automatic
approaches to dense face alignment, subject-dependent (i.e.
active appearance models (AAMs)) vs subject-independent (i.e.
Constrained Local Model (CLM)) and conducted a battery of
experiments across various datasets (i.e. CK+, Pain, RUFACS
and GEMEP) to quantify these effects.

I. INTRODUCTION
Research into affective computing has been very active

over the past decade, mainly due to the vast number of appli-
cations in which it could be useful in (i.e. marketing, human-
computer-interaction, health-care, security, behavioral sci-
ence, car safety etc.). The main goal of this research is
to have a computer system being able to automatically
detect/infer the emotional state of any person based on
various modes (i.e. face, voice, body, actions) in real-time.

The majority of this work has centered on the task of facial
expression detection, mostly by way of individual action unit
(AU) detection. The popular approach to this has been to
first locate and track a person’s face and facial features,
derive a feature representation of the face and then classify
whether or not a frame contains the AU of interest or not
(see Figure 1). In terms of face alignment, this can be done
either coarsely through tracking a couple of key features (i.e.
Viola & Jones [1] type approach where the face and eyes are
tracked) or highly accurately via a deformable model type
approach where a dense mesh of 60-70 points on the face is
used. The latter is desired due to this accuracy in addition
to their ability to infer the 3D pose parameters (i.e. pitch,
yaw and roll) and features (i.e. synthesize frontal view),

PAMI DRAFT - 2009 4

u

v

(1,1)

...

x

y ...

x

y ...

(2,2)

...

...

...

(3,3)

...

...

...

(4,4)

Fig. 1. Visualization of Gabor filter banks in spatial and Fourier domains. The above figure shows individual Gabor filters stemming
from a 4x4 coverage of the spectrum, with each individual filter corresponding to a different orientation and scale. Row 1: Frequency
domain Gabor filters. Row 2: Spatial domain Even filters. Row 3: Spatial domain Odd filters.

referred to as Parseval’s relation which states that,

xT
i xj = x̂T

i x̂j⇥i, j (12)

given that we assume our complex 2D-DFT basis F is or-
thonormal. Based on this formulation learning a linear SVM
in the spatial or Fourier domain should be identical.

5 RE-INTERPRETING LINEAR FILTERS
Taking the results from Sections 3 and 4 it is possible to
re-interpret the learning of an SVM with concatenated filter
responses zi in the spatial domain as being equivalent to
learning the support weight vector � in the dual problem,

max
0⇥�i⇥C

l⇤

i=1

�i �
1
2

l⇤

i=1

l⇤

j=1

�i�jyiyjx̂T
i Sx̂j (13)

subject to
l⇤

i=1

yi�i = 0

where x̂i is the 2D-DFT of the vectorized training image xi

and S is the diagonal weighting matrix of filters estimated in
Equation 8. Equivalently, one can view the prime problem as,

min
ŵ

1
2
ŵTS�1ŵ + C

l⇤

i=1

[1� yiŵT x̂i]+ (14)

where we can now view the SVM as attempting to maximize
the weighted Euclidean distance margin, inversely proportional
to ŵTS�1ŵ, in a N dimensional Fourier space. This is in
contrast to the canonical viewpoint that attempts to maximize
the Euclidean distance margin for an SVM in a NM dimen-
sional spatial filter response space. A major disadvantage to
the latter viewpoint is that memory storage and computational
cost are directly linked to the number of filter banks M
being employed. In our new viewpoint the matrix S can be
pre-computed before learning, making the equivalent learning
process now independent of M . It is interesting to note that in

Equation 14 we are only manipulating the margin term, while
the form of the hinge error term remains the same.

5.1 Training with Complex Vectors
One problem, however, with our proposed computationally
efficient approach to learning a Gabor filtered linear SVM
is that learning has to occur in the Fourier rather than the
spatial domain. This means that an SVM has to be learnt
using complex (real and imaginary) vectors rather than just
real vectors obtained from the spatial image domain. At first
glance learning an SVM with complex Fourier vectors may
seem problematic and require SVM software specifically for
learning in the Fourier domain as: (i) in general the inner prod-
uct between two complex vectors is itself a complex number,
and (ii) most existing SVM packages (e.g., LibSVM [16]) can
handle only real vectors during training.
Fortunately, the first problem can be automatically circum-

vented through Parseval’s relation which guarantees that the
inner product in the Fourier domain is equivalent to the inner
product in the spatial domain. Since the spatial images are all
real, then the inner product in the Fourier domain must also
be real. The second problem can also be easily circumvented
through the realization that for any two Fourier complex
vectors x̂i and x̂j derived from spatial signals/images xi

and xj respectively the following equivalence holds,

x̂T
i x̂j =

�
Re{x̂i}
Im{x̂i}

⇥T �
Re{x̂j}
Im{x̂j}

⇥
(15)

a proof of this equivalence can be found in the Appendix.
Based on this equivalence one can replace any N dimensional
complex Fourier vector, equivalently, with a 2N dimensional
real vector where the real and imaginary components have
been concatenated into a single vector. Since the inner products
will be identical, according to the dual of the SVM objective
function, the estimated support weights should be identical.
This equivalence greatly simplifies the learning of the linear

3.3. TRAINING APPLICATIONS 43

Figure 3.2: AFERS at various states. Row-wise from top-left to bottom-right:
Initial display, neutral, joy, disgust, surprise, contempt.

(a) (b) (c)

(a) (b)

(d)

Monday, September 27, 2010

Fig. 1: Most facial expression systems (a) align the face and
facial features (i.e. either coarse registration (i.e. face and eyes)
or deformable models using dense mesh (i.e. subject-dependent
approach (AAM) or subject-independent approach (CLM). After
tracking, an image of the face is obtained and this image may
or may not be post-processed (b) (e.g. Gabor filter bank) to
gain a feature representation (c). These features are then used for
classifcation (d).

which is ideal in situations where there is a lot of head
movement, especially out-of-plane head rotations. Subject-
dependent active appearance models (AAMs) [2], [3] have
been widely used in this field [4], [5], [6], [7] for those
reasons but this approach requires manual labeling of key
frames of the target sequence (up to 5% of frames). For
applications where manually labeling frames is prohibitive
(e.g. marketing, security/law enforcement, health-care and
HCI), a more generic or subject-independent face alignment
approach is required. One such approach is the constrained
local model (CLM) method developed by Saragih et al. [8].
The CLM leverages the generalization capacity of local patch
experts and the constraint over joint deformation provided by
a point distribution model (PDM). It is similar to AAMs in
the fact that it tracks a dense mesh of points on the face that
produce both shape and appearance features, but through the
utilization of these patches it has been shown to work well
for the subject-independent case (i.e. unseen subjects).

Once the face has been tracked, the normal convention is
to apply a bank of filters, followed by a rectification step,
contrast normalization, and then a pooling/subsampling strat-
egy. For example, the popular Histogram of Orientated Gra-
dients (HOG) [9], [10], [11], [12], and Gabor magnitude [11],
[12], [13] descriptors readily fit into this parametric form.
These features have been widely used due to their biological
relevance, their ability to encode edges and texture, and their
invariance to illumination. An inherent problem with this
method is the large memory and computational overheads
required for training and testing these filter banks. Other
than cases where their is extreme illumination variation,
which is unlikely for the vast majority of applications of this
technology at the moment (i.e. the environment should be

Linear SVM

(b)

(a)

x � RDx � RD

refer to (i) and (ii) as representation 2DS-NS and 2DS-
A respectively.

2DA: 2D appearance, A(u) representation (see Equation
(2)) of the appearance of the face given a static mean
shape.

3DS: 3D shape, s representation (see Equation (3)) where
the position in 3D of the face and its facial features has
been estimated. Normalization is applied through the
removal of the similarity transform in 3D (i.e. remove
3D translation, scale and rotation).

2DS

2DA

3DSWarp to
mean shape

Figure 2: AAM Derived features. The AAM tracked result is used
to compute the 2D shape, the shape-free appearance, and the 3D
shape.

5. Classifiers
In this paper, since we are dealing with peak-to-peak recog-
nition, we explored two commonly used classifiers for facial
action recognition [3, 6].

5.1. Nearest Neighbor (NN)
Nearest neighbor (NN) classifiers are typically employed in
scenarios where there are many classes, and there is a mini-
mal amount of training observations for each class (e.g. face
recognition); making them well suited for the task of facial
action recognition. A NN classifier seeks to find of N la-
beled train observations {oi}N

i=1 the single closest observa-
tion to the unlabeled test observation o∗; classifying o∗ as
having the nearest neighbor’s label.

When N is small the choice of distance metric D(a,b)
between observation points becomes especially impor-
tant [12]. One of the most common distance metrics em-
ployed in face recognition and facial action recognition is
the Mahalanobis distance,

D(a,b) = (a − b)T W(a − b) (5)

where a and b are observation vectors being compared
and W is a weighting matrix. It is often advantageous to

attempt to learn W from the train-set. Two common ap-
proaches to learn W are,

Principal Component Analysis (PCA): attempts to find
the K eigenvectors V = {vk}K

k=1, corresponding to
the K largest eigenvalues, of the train-set’s covari-
ance matrix. These K eigenvectors can be thought
of as the K largest modes of linear variation in the
train-set. The weighting matrix can then be defined
as W = VVT . Typically, K << N thereby con-
straining the matching of a and b to a subspace where
training observations have previously spanned.

Linear Discriminant Analysis (LDA): attempts to find
the K eigenvectors V = {vk}K

k=1 of SbS−1
w where Sb

and Sw are the within- and between- class scatter ma-
trices of the train-set. These K eigenvectors can be
thought of as the K largest modes of discrimination
in the train-set. Since SbS−1

w is not symmetrical, we
must employ simultaneous diagonalization [12] to find
the solution. PCA is typically applied before LDA, es-
pecially if the dimensionality of the raw face represen-
tations is large, so as to minimize sample-size noise.

If there is not enough training data and many classes
LDA overfits and can perform poorly, on the other hand
PCA could not be discriminative enough if two classes span
a similar subspace. For the purposes of this paper PCA used
in conjunction with LDA was found to be most suitable for
the task of facial action recognition; we shall refer to this
classifier as NN-LDA.

5.2. Support Vector Machine (SVM)
Support vector machines (SVMs) have been demonstrated
to be extremely useful in a number of pattern recognition
tasks including face and facial action recognition. This type
of classifier attempts to find the hyper-plane that maximizes
the margin between positive and negative observations for
a specified class. A linear SVM classification decision is
made for an unlabeled test observation o∗ by,

wT o∗
true
≷

false
b (6)

where w is the vector normal to the separating hyperplane
and b is the bias. Both w and b were estimated so that they
minimize the structural risk of a train-set. Typically, w is
not defined explicitly, but through a linear sum of support
vectors. As a result SVMs offer additional appeal as they
allow for the employment of non-linear combination func-
tions through the use of kernel functions such as the radial
basis function (RBF), polynomial, sigmoid kernels. A RBF
kernel was used in our experiments throughout this paper

!"#$%%&'()*+#,+-.%+/-.+0(-%"(1-'#(12+3#(,%"%($%+#(+45-#61-'$+71$%+1(&+8%*-5"%+9%$#)('-'#(+:789;<=>+

<?/=@A?BA<C?BD<=+EB<F<<+G+B<<=!!"""#

refer to (i) and (ii) as representation 2DS-NS and 2DS-
A respectively.

2DA: 2D appearance, A(u) representation (see Equation
(2)) of the appearance of the face given a static mean
shape.

3DS: 3D shape, s representation (see Equation (3)) where
the position in 3D of the face and its facial features has
been estimated. Normalization is applied through the
removal of the similarity transform in 3D (i.e. remove
3D translation, scale and rotation).

2DS

2DA

3DSWarp to
mean shape

Figure 2: AAM Derived features. The AAM tracked result is used
to compute the 2D shape, the shape-free appearance, and the 3D
shape.

5. Classifiers
In this paper, since we are dealing with peak-to-peak recog-
nition, we explored two commonly used classifiers for facial
action recognition [3, 6].

5.1. Nearest Neighbor (NN)
Nearest neighbor (NN) classifiers are typically employed in
scenarios where there are many classes, and there is a mini-
mal amount of training observations for each class (e.g. face
recognition); making them well suited for the task of facial
action recognition. A NN classifier seeks to find of N la-
beled train observations {oi}N

i=1 the single closest observa-
tion to the unlabeled test observation o∗; classifying o∗ as
having the nearest neighbor’s label.

When N is small the choice of distance metric D(a,b)
between observation points becomes especially impor-
tant [12]. One of the most common distance metrics em-
ployed in face recognition and facial action recognition is
the Mahalanobis distance,

D(a,b) = (a − b)T W(a − b) (5)

where a and b are observation vectors being compared
and W is a weighting matrix. It is often advantageous to

attempt to learn W from the train-set. Two common ap-
proaches to learn W are,

Principal Component Analysis (PCA): attempts to find
the K eigenvectors V = {vk}K

k=1, corresponding to
the K largest eigenvalues, of the train-set’s covari-
ance matrix. These K eigenvectors can be thought
of as the K largest modes of linear variation in the
train-set. The weighting matrix can then be defined
as W = VVT . Typically, K << N thereby con-
straining the matching of a and b to a subspace where
training observations have previously spanned.

Linear Discriminant Analysis (LDA): attempts to find
the K eigenvectors V = {vk}K

k=1 of SbS−1
w where Sb

and Sw are the within- and between- class scatter ma-
trices of the train-set. These K eigenvectors can be
thought of as the K largest modes of discrimination
in the train-set. Since SbS−1

w is not symmetrical, we
must employ simultaneous diagonalization [12] to find
the solution. PCA is typically applied before LDA, es-
pecially if the dimensionality of the raw face represen-
tations is large, so as to minimize sample-size noise.

If there is not enough training data and many classes
LDA overfits and can perform poorly, on the other hand
PCA could not be discriminative enough if two classes span
a similar subspace. For the purposes of this paper PCA used
in conjunction with LDA was found to be most suitable for
the task of facial action recognition; we shall refer to this
classifier as NN-LDA.

5.2. Support Vector Machine (SVM)
Support vector machines (SVMs) have been demonstrated
to be extremely useful in a number of pattern recognition
tasks including face and facial action recognition. This type
of classifier attempts to find the hyper-plane that maximizes
the margin between positive and negative observations for
a specified class. A linear SVM classification decision is
made for an unlabeled test observation o∗ by,

wT o∗
true
≷

false
b (6)

where w is the vector normal to the separating hyperplane
and b is the bias. Both w and b were estimated so that they
minimize the structural risk of a train-set. Typically, w is
not defined explicitly, but through a linear sum of support
vectors. As a result SVMs offer additional appeal as they
allow for the employment of non-linear combination func-
tions through the use of kernel functions such as the radial
basis function (RBF), polynomial, sigmoid kernels. A RBF
kernel was used in our experiments throughout this paper

!"#$%%&'()*+#,+-.%+/-.+0(-%"(1-'#(12+3#(,%"%($%+#(+45-#61-'$+71$%+1(&+8%*-5"%+9%$#)('-'#(+:789;<=>+

<?/=@A?BA<C?BD<=+EB<F<<+G+B<<=!!"""#

2

64
x ⇤ g1

...
x ⇤ gF

3

75

Pinto et al. 2008
Hubel & Wiesel 1962
Serre & Poggio 2007

Lowe 1999

Filter Bank

In the Pursuit of Effective Affective Computing:
Are Features Necessary?

Abstract— All facial expression recognition systems require
some geometric alignment of the face intensity image before
the classification process can occur. Ideally, one would attempt
to perform a “dense” alignment, where a large number (e.g.,
60-70) of fiducial points on the face image are accurately
detected with high accuracy. Up until recently, this type of
dense alignment, however, has been problematic due to poor
reliability and robustness. Instead, many expression detection
methods have relied on a two tier strategy of: (i) employing
a “coarse” alignment where only a few (e.g., 3-4) points on
the face are detected with relatively poor accuracy but high
reliability and robustness, and (ii) using a feature/descriptor
based representation of the coarsely registered image such as
Histogram of Orientated Gradients (HOG) or Gabor magni-
tudes. Recently, however, a number of new algorithms for face
alignment have demonstrated both dense alignment with high
reliability and accuracy (e.g. Constrained Local Models), which
begs the question: what do these features do that standard
pixel representations do not? In this paper we show that when
close to perfect alignment is obtained, there is no real benefit
in employing these different appearance-based representations
in consistent conditions. However, we show that when there is
misalignment these features do work well by encoding robustess
to alignment error. For this work, we compared two automatic
approaches to dense face alignment, subject-dependent (i.e.
active appearance models (AAMs)) vs subject-independent (i.e.
Constrained Local Model (CLM)) and conducted a battery of
experiments across various datasets (i.e. CK+, Pain, RUFACS
and GEMEP) to quantify these effects.

I. INTRODUCTION
Research into affective computing has been very active

over the past decade, mainly due to the vast number of appli-
cations in which it could be useful in (i.e. marketing, human-
computer-interaction, health-care, security, behavioral sci-
ence, car safety etc.). The main goal of this research is
to have a computer system being able to automatically
detect/infer the emotional state of any person based on
various modes (i.e. face, voice, body, actions) in real-time.

The majority of this work has centered on the task of facial
expression detection, mostly by way of individual action unit
(AU) detection. The popular approach to this has been to
first locate and track a person’s face and facial features,
derive a feature representation of the face and then classify
whether or not a frame contains the AU of interest or not
(see Figure 1). In terms of face alignment, this can be done
either coarsely through tracking a couple of key features (i.e.
Viola & Jones [1] type approach where the face and eyes are
tracked) or highly accurately via a deformable model type
approach where a dense mesh of 60-70 points on the face is
used. The latter is desired due to this accuracy in addition
to their ability to infer the 3D pose parameters (i.e. pitch,
yaw and roll) and features (i.e. synthesize frontal view),

PAMI DRAFT - 2009 4

u

v

(1,1)

...

x

y ...

x

y ...

(2,2)

...

...

...

(3,3)

...

...

...

(4,4)

Fig. 1. Visualization of Gabor filter banks in spatial and Fourier domains. The above figure shows individual Gabor filters stemming
from a 4x4 coverage of the spectrum, with each individual filter corresponding to a different orientation and scale. Row 1: Frequency
domain Gabor filters. Row 2: Spatial domain Even filters. Row 3: Spatial domain Odd filters.

referred to as Parseval’s relation which states that,

xT
i xj = x̂T

i x̂j⇥i, j (12)

given that we assume our complex 2D-DFT basis F is or-
thonormal. Based on this formulation learning a linear SVM
in the spatial or Fourier domain should be identical.

5 RE-INTERPRETING LINEAR FILTERS
Taking the results from Sections 3 and 4 it is possible to
re-interpret the learning of an SVM with concatenated filter
responses zi in the spatial domain as being equivalent to
learning the support weight vector � in the dual problem,

max
0⇥�i⇥C

l⇤

i=1

�i �
1
2

l⇤

i=1

l⇤

j=1

�i�jyiyjx̂T
i Sx̂j (13)

subject to
l⇤

i=1

yi�i = 0

where x̂i is the 2D-DFT of the vectorized training image xi

and S is the diagonal weighting matrix of filters estimated in
Equation 8. Equivalently, one can view the prime problem as,

min
ŵ

1
2
ŵTS�1ŵ + C

l⇤

i=1

[1� yiŵT x̂i]+ (14)

where we can now view the SVM as attempting to maximize
the weighted Euclidean distance margin, inversely proportional
to ŵTS�1ŵ, in a N dimensional Fourier space. This is in
contrast to the canonical viewpoint that attempts to maximize
the Euclidean distance margin for an SVM in a NM dimen-
sional spatial filter response space. A major disadvantage to
the latter viewpoint is that memory storage and computational
cost are directly linked to the number of filter banks M
being employed. In our new viewpoint the matrix S can be
pre-computed before learning, making the equivalent learning
process now independent of M . It is interesting to note that in

Equation 14 we are only manipulating the margin term, while
the form of the hinge error term remains the same.

5.1 Training with Complex Vectors
One problem, however, with our proposed computationally
efficient approach to learning a Gabor filtered linear SVM
is that learning has to occur in the Fourier rather than the
spatial domain. This means that an SVM has to be learnt
using complex (real and imaginary) vectors rather than just
real vectors obtained from the spatial image domain. At first
glance learning an SVM with complex Fourier vectors may
seem problematic and require SVM software specifically for
learning in the Fourier domain as: (i) in general the inner prod-
uct between two complex vectors is itself a complex number,
and (ii) most existing SVM packages (e.g., LibSVM [16]) can
handle only real vectors during training.
Fortunately, the first problem can be automatically circum-

vented through Parseval’s relation which guarantees that the
inner product in the Fourier domain is equivalent to the inner
product in the spatial domain. Since the spatial images are all
real, then the inner product in the Fourier domain must also
be real. The second problem can also be easily circumvented
through the realization that for any two Fourier complex
vectors x̂i and x̂j derived from spatial signals/images xi

and xj respectively the following equivalence holds,

x̂T
i x̂j =

�
Re{x̂i}
Im{x̂i}

⇥T �
Re{x̂j}
Im{x̂j}

⇥
(15)

a proof of this equivalence can be found in the Appendix.
Based on this equivalence one can replace any N dimensional
complex Fourier vector, equivalently, with a 2N dimensional
real vector where the real and imaginary components have
been concatenated into a single vector. Since the inner products
will be identical, according to the dual of the SVM objective
function, the estimated support weights should be identical.
This equivalence greatly simplifies the learning of the linear

3.3. TRAINING APPLICATIONS 43

Figure 3.2: AFERS at various states. Row-wise from top-left to bottom-right:
Initial display, neutral, joy, disgust, surprise, contempt.

(a) (b) (c)

(a) (b)

(d)

Monday, September 27, 2010

Fig. 1: Most facial expression systems (a) align the face and
facial features (i.e. either coarse registration (i.e. face and eyes)
or deformable models using dense mesh (i.e. subject-dependent
approach (AAM) or subject-independent approach (CLM). After
tracking, an image of the face is obtained and this image may
or may not be post-processed (b) (e.g. Gabor filter bank) to
gain a feature representation (c). These features are then used for
classifcation (d).

which is ideal in situations where there is a lot of head
movement, especially out-of-plane head rotations. Subject-
dependent active appearance models (AAMs) [2], [3] have
been widely used in this field [4], [5], [6], [7] for those
reasons but this approach requires manual labeling of key
frames of the target sequence (up to 5% of frames). For
applications where manually labeling frames is prohibitive
(e.g. marketing, security/law enforcement, health-care and
HCI), a more generic or subject-independent face alignment
approach is required. One such approach is the constrained
local model (CLM) method developed by Saragih et al. [8].
The CLM leverages the generalization capacity of local patch
experts and the constraint over joint deformation provided by
a point distribution model (PDM). It is similar to AAMs in
the fact that it tracks a dense mesh of points on the face that
produce both shape and appearance features, but through the
utilization of these patches it has been shown to work well
for the subject-independent case (i.e. unseen subjects).

Once the face has been tracked, the normal convention is
to apply a bank of filters, followed by a rectification step,
contrast normalization, and then a pooling/subsampling strat-
egy. For example, the popular Histogram of Orientated Gra-
dients (HOG) [9], [10], [11], [12], and Gabor magnitude [11],
[12], [13] descriptors readily fit into this parametric form.
These features have been widely used due to their biological
relevance, their ability to encode edges and texture, and their
invariance to illumination. An inherent problem with this
method is the large memory and computational overheads
required for training and testing these filter banks. Other
than cases where their is extreme illumination variation,
which is unlikely for the vast majority of applications of this
technology at the moment (i.e. the environment should be

RectificationFilter Bank

|| . ||

Pooling

local average

"coarse"
"alignment"
"warping"

"dense"
"alignment"
"warping"

In the Pursuit of Effective Affective Computing:
Are Features Necessary?

Abstract— All facial expression recognition systems require
some geometric alignment of the face intensity image before
the classification process can occur. Ideally, one would attempt
to perform a “dense” alignment, where a large number (e.g.,
60-70) of fiducial points on the face image are accurately
detected with high accuracy. Up until recently, this type of
dense alignment, however, has been problematic due to poor
reliability and robustness. Instead, many expression detection
methods have relied on a two tier strategy of: (i) employing
a “coarse” alignment where only a few (e.g., 3-4) points on
the face are detected with relatively poor accuracy but high
reliability and robustness, and (ii) using a feature/descriptor
based representation of the coarsely registered image such as
Histogram of Orientated Gradients (HOG) or Gabor magni-
tudes. Recently, however, a number of new algorithms for face
alignment have demonstrated both dense alignment with high
reliability and accuracy (e.g. Constrained Local Models), which
begs the question: what do these features do that standard
pixel representations do not? In this paper we show that when
close to perfect alignment is obtained, there is no real benefit
in employing these different appearance-based representations
in consistent conditions. However, we show that when there is
misalignment these features do work well by encoding robustess
to alignment error. For this work, we compared two automatic
approaches to dense face alignment, subject-dependent (i.e.
active appearance models (AAMs)) vs subject-independent (i.e.
Constrained Local Model (CLM)) and conducted a battery of
experiments across various datasets (i.e. CK+, Pain, RUFACS
and GEMEP) to quantify these effects.

I. INTRODUCTION
Research into affective computing has been very active

over the past decade, mainly due to the vast number of appli-
cations in which it could be useful in (i.e. marketing, human-
computer-interaction, health-care, security, behavioral sci-
ence, car safety etc.). The main goal of this research is
to have a computer system being able to automatically
detect/infer the emotional state of any person based on
various modes (i.e. face, voice, body, actions) in real-time.

The majority of this work has centered on the task of facial
expression detection, mostly by way of individual action unit
(AU) detection. The popular approach to this has been to
first locate and track a person’s face and facial features,
derive a feature representation of the face and then classify
whether or not a frame contains the AU of interest or not
(see Figure 1). In terms of face alignment, this can be done
either coarsely through tracking a couple of key features (i.e.
Viola & Jones [1] type approach where the face and eyes are
tracked) or highly accurately via a deformable model type
approach where a dense mesh of 60-70 points on the face is
used. The latter is desired due to this accuracy in addition
to their ability to infer the 3D pose parameters (i.e. pitch,
yaw and roll) and features (i.e. synthesize frontal view),

PAMI DRAFT - 2009 4

u

v

(1,1)

...

x

y ...

x

y ...

(2,2)

...

...

...

(3,3)

...

...

...

(4,4)

Fig. 1. Visualization of Gabor filter banks in spatial and Fourier domains. The above figure shows individual Gabor filters stemming
from a 4x4 coverage of the spectrum, with each individual filter corresponding to a different orientation and scale. Row 1: Frequency
domain Gabor filters. Row 2: Spatial domain Even filters. Row 3: Spatial domain Odd filters.

referred to as Parseval’s relation which states that,

xT
i xj = x̂T

i x̂j⇥i, j (12)

given that we assume our complex 2D-DFT basis F is or-
thonormal. Based on this formulation learning a linear SVM
in the spatial or Fourier domain should be identical.

5 RE-INTERPRETING LINEAR FILTERS
Taking the results from Sections 3 and 4 it is possible to
re-interpret the learning of an SVM with concatenated filter
responses zi in the spatial domain as being equivalent to
learning the support weight vector � in the dual problem,

max
0⇥�i⇥C

l⇤

i=1

�i �
1
2

l⇤

i=1

l⇤

j=1

�i�jyiyjx̂T
i Sx̂j (13)

subject to
l⇤

i=1

yi�i = 0

where x̂i is the 2D-DFT of the vectorized training image xi

and S is the diagonal weighting matrix of filters estimated in
Equation 8. Equivalently, one can view the prime problem as,

min
ŵ

1
2
ŵTS�1ŵ + C

l⇤

i=1

[1� yiŵT x̂i]+ (14)

where we can now view the SVM as attempting to maximize
the weighted Euclidean distance margin, inversely proportional
to ŵTS�1ŵ, in a N dimensional Fourier space. This is in
contrast to the canonical viewpoint that attempts to maximize
the Euclidean distance margin for an SVM in a NM dimen-
sional spatial filter response space. A major disadvantage to
the latter viewpoint is that memory storage and computational
cost are directly linked to the number of filter banks M
being employed. In our new viewpoint the matrix S can be
pre-computed before learning, making the equivalent learning
process now independent of M . It is interesting to note that in

Equation 14 we are only manipulating the margin term, while
the form of the hinge error term remains the same.

5.1 Training with Complex Vectors
One problem, however, with our proposed computationally
efficient approach to learning a Gabor filtered linear SVM
is that learning has to occur in the Fourier rather than the
spatial domain. This means that an SVM has to be learnt
using complex (real and imaginary) vectors rather than just
real vectors obtained from the spatial image domain. At first
glance learning an SVM with complex Fourier vectors may
seem problematic and require SVM software specifically for
learning in the Fourier domain as: (i) in general the inner prod-
uct between two complex vectors is itself a complex number,
and (ii) most existing SVM packages (e.g., LibSVM [16]) can
handle only real vectors during training.
Fortunately, the first problem can be automatically circum-

vented through Parseval’s relation which guarantees that the
inner product in the Fourier domain is equivalent to the inner
product in the spatial domain. Since the spatial images are all
real, then the inner product in the Fourier domain must also
be real. The second problem can also be easily circumvented
through the realization that for any two Fourier complex
vectors x̂i and x̂j derived from spatial signals/images xi

and xj respectively the following equivalence holds,

x̂T
i x̂j =

�
Re{x̂i}
Im{x̂i}

⇥T �
Re{x̂j}
Im{x̂j}

⇥
(15)

a proof of this equivalence can be found in the Appendix.
Based on this equivalence one can replace any N dimensional
complex Fourier vector, equivalently, with a 2N dimensional
real vector where the real and imaginary components have
been concatenated into a single vector. Since the inner products
will be identical, according to the dual of the SVM objective
function, the estimated support weights should be identical.
This equivalence greatly simplifies the learning of the linear

3.3. TRAINING APPLICATIONS 43

Figure 3.2: AFERS at various states. Row-wise from top-left to bottom-right:
Initial display, neutral, joy, disgust, surprise, contempt.

(a) (b) (c)

(a) (b)

(d)

Monday, September 27, 2010

Fig. 1: Most facial expression systems (a) align the face and
facial features (i.e. either coarse registration (i.e. face and eyes)
or deformable models using dense mesh (i.e. subject-dependent
approach (AAM) or subject-independent approach (CLM). After
tracking, an image of the face is obtained and this image may
or may not be post-processed (b) (e.g. Gabor filter bank) to
gain a feature representation (c). These features are then used for
classifcation (d).

which is ideal in situations where there is a lot of head
movement, especially out-of-plane head rotations. Subject-
dependent active appearance models (AAMs) [2], [3] have
been widely used in this field [4], [5], [6], [7] for those
reasons but this approach requires manual labeling of key
frames of the target sequence (up to 5% of frames). For
applications where manually labeling frames is prohibitive
(e.g. marketing, security/law enforcement, health-care and
HCI), a more generic or subject-independent face alignment
approach is required. One such approach is the constrained
local model (CLM) method developed by Saragih et al. [8].
The CLM leverages the generalization capacity of local patch
experts and the constraint over joint deformation provided by
a point distribution model (PDM). It is similar to AAMs in
the fact that it tracks a dense mesh of points on the face that
produce both shape and appearance features, but through the
utilization of these patches it has been shown to work well
for the subject-independent case (i.e. unseen subjects).

Once the face has been tracked, the normal convention is
to apply a bank of filters, followed by a rectification step,
contrast normalization, and then a pooling/subsampling strat-
egy. For example, the popular Histogram of Orientated Gra-
dients (HOG) [9], [10], [11], [12], and Gabor magnitude [11],
[12], [13] descriptors readily fit into this parametric form.
These features have been widely used due to their biological
relevance, their ability to encode edges and texture, and their
invariance to illumination. An inherent problem with this
method is the large memory and computational overheads
required for training and testing these filter banks. Other
than cases where their is extreme illumination variation,
which is unlikely for the vast majority of applications of this
technology at the moment (i.e. the environment should be

Linear SVM

(b)

(a)

x � RD

Rectification

x � RD

refer to (i) and (ii) as representation 2DS-NS and 2DS-
A respectively.

2DA: 2D appearance, A(u) representation (see Equation
(2)) of the appearance of the face given a static mean
shape.

3DS: 3D shape, s representation (see Equation (3)) where
the position in 3D of the face and its facial features has
been estimated. Normalization is applied through the
removal of the similarity transform in 3D (i.e. remove
3D translation, scale and rotation).

2DS

2DA

3DSWarp to
mean shape

Figure 2: AAM Derived features. The AAM tracked result is used
to compute the 2D shape, the shape-free appearance, and the 3D
shape.

5. Classifiers
In this paper, since we are dealing with peak-to-peak recog-
nition, we explored two commonly used classifiers for facial
action recognition [3, 6].

5.1. Nearest Neighbor (NN)
Nearest neighbor (NN) classifiers are typically employed in
scenarios where there are many classes, and there is a mini-
mal amount of training observations for each class (e.g. face
recognition); making them well suited for the task of facial
action recognition. A NN classifier seeks to find of N la-
beled train observations {oi}N

i=1 the single closest observa-
tion to the unlabeled test observation o∗; classifying o∗ as
having the nearest neighbor’s label.

When N is small the choice of distance metric D(a,b)
between observation points becomes especially impor-
tant [12]. One of the most common distance metrics em-
ployed in face recognition and facial action recognition is
the Mahalanobis distance,

D(a,b) = (a − b)T W(a − b) (5)

where a and b are observation vectors being compared
and W is a weighting matrix. It is often advantageous to

attempt to learn W from the train-set. Two common ap-
proaches to learn W are,

Principal Component Analysis (PCA): attempts to find
the K eigenvectors V = {vk}K

k=1, corresponding to
the K largest eigenvalues, of the train-set’s covari-
ance matrix. These K eigenvectors can be thought
of as the K largest modes of linear variation in the
train-set. The weighting matrix can then be defined
as W = VVT . Typically, K << N thereby con-
straining the matching of a and b to a subspace where
training observations have previously spanned.

Linear Discriminant Analysis (LDA): attempts to find
the K eigenvectors V = {vk}K

k=1 of SbS−1
w where Sb

and Sw are the within- and between- class scatter ma-
trices of the train-set. These K eigenvectors can be
thought of as the K largest modes of discrimination
in the train-set. Since SbS−1

w is not symmetrical, we
must employ simultaneous diagonalization [12] to find
the solution. PCA is typically applied before LDA, es-
pecially if the dimensionality of the raw face represen-
tations is large, so as to minimize sample-size noise.

If there is not enough training data and many classes
LDA overfits and can perform poorly, on the other hand
PCA could not be discriminative enough if two classes span
a similar subspace. For the purposes of this paper PCA used
in conjunction with LDA was found to be most suitable for
the task of facial action recognition; we shall refer to this
classifier as NN-LDA.

5.2. Support Vector Machine (SVM)
Support vector machines (SVMs) have been demonstrated
to be extremely useful in a number of pattern recognition
tasks including face and facial action recognition. This type
of classifier attempts to find the hyper-plane that maximizes
the margin between positive and negative observations for
a specified class. A linear SVM classification decision is
made for an unlabeled test observation o∗ by,

wT o∗
true
≷

false
b (6)

where w is the vector normal to the separating hyperplane
and b is the bias. Both w and b were estimated so that they
minimize the structural risk of a train-set. Typically, w is
not defined explicitly, but through a linear sum of support
vectors. As a result SVMs offer additional appeal as they
allow for the employment of non-linear combination func-
tions through the use of kernel functions such as the radial
basis function (RBF), polynomial, sigmoid kernels. A RBF
kernel was used in our experiments throughout this paper

!"#$%%&'()*+#,+-.%+/-.+0(-%"(1-'#(12+3#(,%"%($%+#(+45-#61-'$+71$%+1(&+8%*-5"%+9%$#)('-'#(+:789;<=>+

<?/=@A?BA<C?BD<=+EB<F<<+G+B<<=!!"""#

refer to (i) and (ii) as representation 2DS-NS and 2DS-
A respectively.

2DA: 2D appearance, A(u) representation (see Equation
(2)) of the appearance of the face given a static mean
shape.

3DS: 3D shape, s representation (see Equation (3)) where
the position in 3D of the face and its facial features has
been estimated. Normalization is applied through the
removal of the similarity transform in 3D (i.e. remove
3D translation, scale and rotation).

2DS

2DA

3DSWarp to
mean shape

Figure 2: AAM Derived features. The AAM tracked result is used
to compute the 2D shape, the shape-free appearance, and the 3D
shape.

5. Classifiers
In this paper, since we are dealing with peak-to-peak recog-
nition, we explored two commonly used classifiers for facial
action recognition [3, 6].

5.1. Nearest Neighbor (NN)
Nearest neighbor (NN) classifiers are typically employed in
scenarios where there are many classes, and there is a mini-
mal amount of training observations for each class (e.g. face
recognition); making them well suited for the task of facial
action recognition. A NN classifier seeks to find of N la-
beled train observations {oi}N

i=1 the single closest observa-
tion to the unlabeled test observation o∗; classifying o∗ as
having the nearest neighbor’s label.

When N is small the choice of distance metric D(a,b)
between observation points becomes especially impor-
tant [12]. One of the most common distance metrics em-
ployed in face recognition and facial action recognition is
the Mahalanobis distance,

D(a,b) = (a − b)T W(a − b) (5)

where a and b are observation vectors being compared
and W is a weighting matrix. It is often advantageous to

attempt to learn W from the train-set. Two common ap-
proaches to learn W are,

Principal Component Analysis (PCA): attempts to find
the K eigenvectors V = {vk}K

k=1, corresponding to
the K largest eigenvalues, of the train-set’s covari-
ance matrix. These K eigenvectors can be thought
of as the K largest modes of linear variation in the
train-set. The weighting matrix can then be defined
as W = VVT . Typically, K << N thereby con-
straining the matching of a and b to a subspace where
training observations have previously spanned.

Linear Discriminant Analysis (LDA): attempts to find
the K eigenvectors V = {vk}K

k=1 of SbS−1
w where Sb

and Sw are the within- and between- class scatter ma-
trices of the train-set. These K eigenvectors can be
thought of as the K largest modes of discrimination
in the train-set. Since SbS−1

w is not symmetrical, we
must employ simultaneous diagonalization [12] to find
the solution. PCA is typically applied before LDA, es-
pecially if the dimensionality of the raw face represen-
tations is large, so as to minimize sample-size noise.

If there is not enough training data and many classes
LDA overfits and can perform poorly, on the other hand
PCA could not be discriminative enough if two classes span
a similar subspace. For the purposes of this paper PCA used
in conjunction with LDA was found to be most suitable for
the task of facial action recognition; we shall refer to this
classifier as NN-LDA.

5.2. Support Vector Machine (SVM)
Support vector machines (SVMs) have been demonstrated
to be extremely useful in a number of pattern recognition
tasks including face and facial action recognition. This type
of classifier attempts to find the hyper-plane that maximizes
the margin between positive and negative observations for
a specified class. A linear SVM classification decision is
made for an unlabeled test observation o∗ by,

wT o∗
true
≷

false
b (6)

where w is the vector normal to the separating hyperplane
and b is the bias. Both w and b were estimated so that they
minimize the structural risk of a train-set. Typically, w is
not defined explicitly, but through a linear sum of support
vectors. As a result SVMs offer additional appeal as they
allow for the employment of non-linear combination func-
tions through the use of kernel functions such as the radial
basis function (RBF), polynomial, sigmoid kernels. A RBF
kernel was used in our experiments throughout this paper

!"#$%%&'()*+#,+-.%+/-.+0(-%"(1-'#(12+3#(,%"%($%+#(+45-#61-'$+71$%+1(&+8%*-5"%+9%$#)('-'#(+:789;<=>+

<?/=@A?BA<C?BD<=+EB<F<<+G+B<<=!!"""#

Pinto et al. 2008
Hubel & Wiesel 1962
Serre & Poggio 2007

Lowe 1999

Filter Bank

In the Pursuit of Effective Affective Computing:
Are Features Necessary?

Abstract— All facial expression recognition systems require
some geometric alignment of the face intensity image before
the classification process can occur. Ideally, one would attempt
to perform a “dense” alignment, where a large number (e.g.,
60-70) of fiducial points on the face image are accurately
detected with high accuracy. Up until recently, this type of
dense alignment, however, has been problematic due to poor
reliability and robustness. Instead, many expression detection
methods have relied on a two tier strategy of: (i) employing
a “coarse” alignment where only a few (e.g., 3-4) points on
the face are detected with relatively poor accuracy but high
reliability and robustness, and (ii) using a feature/descriptor
based representation of the coarsely registered image such as
Histogram of Orientated Gradients (HOG) or Gabor magni-
tudes. Recently, however, a number of new algorithms for face
alignment have demonstrated both dense alignment with high
reliability and accuracy (e.g. Constrained Local Models), which
begs the question: what do these features do that standard
pixel representations do not? In this paper we show that when
close to perfect alignment is obtained, there is no real benefit
in employing these different appearance-based representations
in consistent conditions. However, we show that when there is
misalignment these features do work well by encoding robustess
to alignment error. For this work, we compared two automatic
approaches to dense face alignment, subject-dependent (i.e.
active appearance models (AAMs)) vs subject-independent (i.e.
Constrained Local Model (CLM)) and conducted a battery of
experiments across various datasets (i.e. CK+, Pain, RUFACS
and GEMEP) to quantify these effects.

I. INTRODUCTION
Research into affective computing has been very active

over the past decade, mainly due to the vast number of appli-
cations in which it could be useful in (i.e. marketing, human-
computer-interaction, health-care, security, behavioral sci-
ence, car safety etc.). The main goal of this research is
to have a computer system being able to automatically
detect/infer the emotional state of any person based on
various modes (i.e. face, voice, body, actions) in real-time.

The majority of this work has centered on the task of facial
expression detection, mostly by way of individual action unit
(AU) detection. The popular approach to this has been to
first locate and track a person’s face and facial features,
derive a feature representation of the face and then classify
whether or not a frame contains the AU of interest or not
(see Figure 1). In terms of face alignment, this can be done
either coarsely through tracking a couple of key features (i.e.
Viola & Jones [1] type approach where the face and eyes are
tracked) or highly accurately via a deformable model type
approach where a dense mesh of 60-70 points on the face is
used. The latter is desired due to this accuracy in addition
to their ability to infer the 3D pose parameters (i.e. pitch,
yaw and roll) and features (i.e. synthesize frontal view),

PAMI DRAFT - 2009 4

u

v

(1,1)

...

x

y ...

x

y ...

(2,2)

...

...

...

(3,3)

...

...

...

(4,4)

Fig. 1. Visualization of Gabor filter banks in spatial and Fourier domains. The above figure shows individual Gabor filters stemming
from a 4x4 coverage of the spectrum, with each individual filter corresponding to a different orientation and scale. Row 1: Frequency
domain Gabor filters. Row 2: Spatial domain Even filters. Row 3: Spatial domain Odd filters.

referred to as Parseval’s relation which states that,

xT
i xj = x̂T

i x̂j⇥i, j (12)

given that we assume our complex 2D-DFT basis F is or-
thonormal. Based on this formulation learning a linear SVM
in the spatial or Fourier domain should be identical.

5 RE-INTERPRETING LINEAR FILTERS
Taking the results from Sections 3 and 4 it is possible to
re-interpret the learning of an SVM with concatenated filter
responses zi in the spatial domain as being equivalent to
learning the support weight vector � in the dual problem,

max
0⇥�i⇥C

l⇤

i=1

�i �
1
2

l⇤

i=1

l⇤

j=1

�i�jyiyjx̂T
i Sx̂j (13)

subject to
l⇤

i=1

yi�i = 0

where x̂i is the 2D-DFT of the vectorized training image xi

and S is the diagonal weighting matrix of filters estimated in
Equation 8. Equivalently, one can view the prime problem as,

min
ŵ

1
2
ŵTS�1ŵ + C

l⇤

i=1

[1� yiŵT x̂i]+ (14)

where we can now view the SVM as attempting to maximize
the weighted Euclidean distance margin, inversely proportional
to ŵTS�1ŵ, in a N dimensional Fourier space. This is in
contrast to the canonical viewpoint that attempts to maximize
the Euclidean distance margin for an SVM in a NM dimen-
sional spatial filter response space. A major disadvantage to
the latter viewpoint is that memory storage and computational
cost are directly linked to the number of filter banks M
being employed. In our new viewpoint the matrix S can be
pre-computed before learning, making the equivalent learning
process now independent of M . It is interesting to note that in

Equation 14 we are only manipulating the margin term, while
the form of the hinge error term remains the same.

5.1 Training with Complex Vectors
One problem, however, with our proposed computationally
efficient approach to learning a Gabor filtered linear SVM
is that learning has to occur in the Fourier rather than the
spatial domain. This means that an SVM has to be learnt
using complex (real and imaginary) vectors rather than just
real vectors obtained from the spatial image domain. At first
glance learning an SVM with complex Fourier vectors may
seem problematic and require SVM software specifically for
learning in the Fourier domain as: (i) in general the inner prod-
uct between two complex vectors is itself a complex number,
and (ii) most existing SVM packages (e.g., LibSVM [16]) can
handle only real vectors during training.
Fortunately, the first problem can be automatically circum-

vented through Parseval’s relation which guarantees that the
inner product in the Fourier domain is equivalent to the inner
product in the spatial domain. Since the spatial images are all
real, then the inner product in the Fourier domain must also
be real. The second problem can also be easily circumvented
through the realization that for any two Fourier complex
vectors x̂i and x̂j derived from spatial signals/images xi

and xj respectively the following equivalence holds,

x̂T
i x̂j =

�
Re{x̂i}
Im{x̂i}

⇥T �
Re{x̂j}
Im{x̂j}

⇥
(15)

a proof of this equivalence can be found in the Appendix.
Based on this equivalence one can replace any N dimensional
complex Fourier vector, equivalently, with a 2N dimensional
real vector where the real and imaginary components have
been concatenated into a single vector. Since the inner products
will be identical, according to the dual of the SVM objective
function, the estimated support weights should be identical.
This equivalence greatly simplifies the learning of the linear

3.3. TRAINING APPLICATIONS 43

Figure 3.2: AFERS at various states. Row-wise from top-left to bottom-right:
Initial display, neutral, joy, disgust, surprise, contempt.

(a) (b) (c)

(a) (b)

(d)

Monday, September 27, 2010

Fig. 1: Most facial expression systems (a) align the face and
facial features (i.e. either coarse registration (i.e. face and eyes)
or deformable models using dense mesh (i.e. subject-dependent
approach (AAM) or subject-independent approach (CLM). After
tracking, an image of the face is obtained and this image may
or may not be post-processed (b) (e.g. Gabor filter bank) to
gain a feature representation (c). These features are then used for
classifcation (d).

which is ideal in situations where there is a lot of head
movement, especially out-of-plane head rotations. Subject-
dependent active appearance models (AAMs) [2], [3] have
been widely used in this field [4], [5], [6], [7] for those
reasons but this approach requires manual labeling of key
frames of the target sequence (up to 5% of frames). For
applications where manually labeling frames is prohibitive
(e.g. marketing, security/law enforcement, health-care and
HCI), a more generic or subject-independent face alignment
approach is required. One such approach is the constrained
local model (CLM) method developed by Saragih et al. [8].
The CLM leverages the generalization capacity of local patch
experts and the constraint over joint deformation provided by
a point distribution model (PDM). It is similar to AAMs in
the fact that it tracks a dense mesh of points on the face that
produce both shape and appearance features, but through the
utilization of these patches it has been shown to work well
for the subject-independent case (i.e. unseen subjects).

Once the face has been tracked, the normal convention is
to apply a bank of filters, followed by a rectification step,
contrast normalization, and then a pooling/subsampling strat-
egy. For example, the popular Histogram of Orientated Gra-
dients (HOG) [9], [10], [11], [12], and Gabor magnitude [11],
[12], [13] descriptors readily fit into this parametric form.
These features have been widely used due to their biological
relevance, their ability to encode edges and texture, and their
invariance to illumination. An inherent problem with this
method is the large memory and computational overheads
required for training and testing these filter banks. Other
than cases where their is extreme illumination variation,
which is unlikely for the vast majority of applications of this
technology at the moment (i.e. the environment should be

RectificationFilter Bank

|| . ||

Pooling

local average

"coarse"
"alignment"
"warping"

"dense"
"alignment"
"warping"

In the Pursuit of Effective Affective Computing:
Are Features Necessary?

Abstract— All facial expression recognition systems require
some geometric alignment of the face intensity image before
the classification process can occur. Ideally, one would attempt
to perform a “dense” alignment, where a large number (e.g.,
60-70) of fiducial points on the face image are accurately
detected with high accuracy. Up until recently, this type of
dense alignment, however, has been problematic due to poor
reliability and robustness. Instead, many expression detection
methods have relied on a two tier strategy of: (i) employing
a “coarse” alignment where only a few (e.g., 3-4) points on
the face are detected with relatively poor accuracy but high
reliability and robustness, and (ii) using a feature/descriptor
based representation of the coarsely registered image such as
Histogram of Orientated Gradients (HOG) or Gabor magni-
tudes. Recently, however, a number of new algorithms for face
alignment have demonstrated both dense alignment with high
reliability and accuracy (e.g. Constrained Local Models), which
begs the question: what do these features do that standard
pixel representations do not? In this paper we show that when
close to perfect alignment is obtained, there is no real benefit
in employing these different appearance-based representations
in consistent conditions. However, we show that when there is
misalignment these features do work well by encoding robustess
to alignment error. For this work, we compared two automatic
approaches to dense face alignment, subject-dependent (i.e.
active appearance models (AAMs)) vs subject-independent (i.e.
Constrained Local Model (CLM)) and conducted a battery of
experiments across various datasets (i.e. CK+, Pain, RUFACS
and GEMEP) to quantify these effects.

I. INTRODUCTION
Research into affective computing has been very active

over the past decade, mainly due to the vast number of appli-
cations in which it could be useful in (i.e. marketing, human-
computer-interaction, health-care, security, behavioral sci-
ence, car safety etc.). The main goal of this research is
to have a computer system being able to automatically
detect/infer the emotional state of any person based on
various modes (i.e. face, voice, body, actions) in real-time.

The majority of this work has centered on the task of facial
expression detection, mostly by way of individual action unit
(AU) detection. The popular approach to this has been to
first locate and track a person’s face and facial features,
derive a feature representation of the face and then classify
whether or not a frame contains the AU of interest or not
(see Figure 1). In terms of face alignment, this can be done
either coarsely through tracking a couple of key features (i.e.
Viola & Jones [1] type approach where the face and eyes are
tracked) or highly accurately via a deformable model type
approach where a dense mesh of 60-70 points on the face is
used. The latter is desired due to this accuracy in addition
to their ability to infer the 3D pose parameters (i.e. pitch,
yaw and roll) and features (i.e. synthesize frontal view),

PAMI DRAFT - 2009 4

u

v

(1,1)

...

x

y ...

x

y ...

(2,2)

...

...

...

(3,3)

...

...

...

(4,4)

Fig. 1. Visualization of Gabor filter banks in spatial and Fourier domains. The above figure shows individual Gabor filters stemming
from a 4x4 coverage of the spectrum, with each individual filter corresponding to a different orientation and scale. Row 1: Frequency
domain Gabor filters. Row 2: Spatial domain Even filters. Row 3: Spatial domain Odd filters.

referred to as Parseval’s relation which states that,

xT
i xj = x̂T

i x̂j⇥i, j (12)

given that we assume our complex 2D-DFT basis F is or-
thonormal. Based on this formulation learning a linear SVM
in the spatial or Fourier domain should be identical.

5 RE-INTERPRETING LINEAR FILTERS
Taking the results from Sections 3 and 4 it is possible to
re-interpret the learning of an SVM with concatenated filter
responses zi in the spatial domain as being equivalent to
learning the support weight vector � in the dual problem,

max
0⇥�i⇥C

l⇤

i=1

�i �
1
2

l⇤

i=1

l⇤

j=1

�i�jyiyjx̂T
i Sx̂j (13)

subject to
l⇤

i=1

yi�i = 0

where x̂i is the 2D-DFT of the vectorized training image xi

and S is the diagonal weighting matrix of filters estimated in
Equation 8. Equivalently, one can view the prime problem as,

min
ŵ

1
2
ŵTS�1ŵ + C

l⇤

i=1

[1� yiŵT x̂i]+ (14)

where we can now view the SVM as attempting to maximize
the weighted Euclidean distance margin, inversely proportional
to ŵTS�1ŵ, in a N dimensional Fourier space. This is in
contrast to the canonical viewpoint that attempts to maximize
the Euclidean distance margin for an SVM in a NM dimen-
sional spatial filter response space. A major disadvantage to
the latter viewpoint is that memory storage and computational
cost are directly linked to the number of filter banks M
being employed. In our new viewpoint the matrix S can be
pre-computed before learning, making the equivalent learning
process now independent of M . It is interesting to note that in

Equation 14 we are only manipulating the margin term, while
the form of the hinge error term remains the same.

5.1 Training with Complex Vectors
One problem, however, with our proposed computationally
efficient approach to learning a Gabor filtered linear SVM
is that learning has to occur in the Fourier rather than the
spatial domain. This means that an SVM has to be learnt
using complex (real and imaginary) vectors rather than just
real vectors obtained from the spatial image domain. At first
glance learning an SVM with complex Fourier vectors may
seem problematic and require SVM software specifically for
learning in the Fourier domain as: (i) in general the inner prod-
uct between two complex vectors is itself a complex number,
and (ii) most existing SVM packages (e.g., LibSVM [16]) can
handle only real vectors during training.
Fortunately, the first problem can be automatically circum-

vented through Parseval’s relation which guarantees that the
inner product in the Fourier domain is equivalent to the inner
product in the spatial domain. Since the spatial images are all
real, then the inner product in the Fourier domain must also
be real. The second problem can also be easily circumvented
through the realization that for any two Fourier complex
vectors x̂i and x̂j derived from spatial signals/images xi

and xj respectively the following equivalence holds,

x̂T
i x̂j =

�
Re{x̂i}
Im{x̂i}

⇥T �
Re{x̂j}
Im{x̂j}

⇥
(15)

a proof of this equivalence can be found in the Appendix.
Based on this equivalence one can replace any N dimensional
complex Fourier vector, equivalently, with a 2N dimensional
real vector where the real and imaginary components have
been concatenated into a single vector. Since the inner products
will be identical, according to the dual of the SVM objective
function, the estimated support weights should be identical.
This equivalence greatly simplifies the learning of the linear

3.3. TRAINING APPLICATIONS 43

Figure 3.2: AFERS at various states. Row-wise from top-left to bottom-right:
Initial display, neutral, joy, disgust, surprise, contempt.

(a) (b) (c)

(a) (b)

(d)

Monday, September 27, 2010

Fig. 1: Most facial expression systems (a) align the face and
facial features (i.e. either coarse registration (i.e. face and eyes)
or deformable models using dense mesh (i.e. subject-dependent
approach (AAM) or subject-independent approach (CLM). After
tracking, an image of the face is obtained and this image may
or may not be post-processed (b) (e.g. Gabor filter bank) to
gain a feature representation (c). These features are then used for
classifcation (d).

which is ideal in situations where there is a lot of head
movement, especially out-of-plane head rotations. Subject-
dependent active appearance models (AAMs) [2], [3] have
been widely used in this field [4], [5], [6], [7] for those
reasons but this approach requires manual labeling of key
frames of the target sequence (up to 5% of frames). For
applications where manually labeling frames is prohibitive
(e.g. marketing, security/law enforcement, health-care and
HCI), a more generic or subject-independent face alignment
approach is required. One such approach is the constrained
local model (CLM) method developed by Saragih et al. [8].
The CLM leverages the generalization capacity of local patch
experts and the constraint over joint deformation provided by
a point distribution model (PDM). It is similar to AAMs in
the fact that it tracks a dense mesh of points on the face that
produce both shape and appearance features, but through the
utilization of these patches it has been shown to work well
for the subject-independent case (i.e. unseen subjects).

Once the face has been tracked, the normal convention is
to apply a bank of filters, followed by a rectification step,
contrast normalization, and then a pooling/subsampling strat-
egy. For example, the popular Histogram of Orientated Gra-
dients (HOG) [9], [10], [11], [12], and Gabor magnitude [11],
[12], [13] descriptors readily fit into this parametric form.
These features have been widely used due to their biological
relevance, their ability to encode edges and texture, and their
invariance to illumination. An inherent problem with this
method is the large memory and computational overheads
required for training and testing these filter banks. Other
than cases where their is extreme illumination variation,
which is unlikely for the vast majority of applications of this
technology at the moment (i.e. the environment should be

Linear SVM

(b)

(a)

x � RD

Rectification

x � RD

refer to (i) and (ii) as representation 2DS-NS and 2DS-
A respectively.

2DA: 2D appearance, A(u) representation (see Equation
(2)) of the appearance of the face given a static mean
shape.

3DS: 3D shape, s representation (see Equation (3)) where
the position in 3D of the face and its facial features has
been estimated. Normalization is applied through the
removal of the similarity transform in 3D (i.e. remove
3D translation, scale and rotation).

2DS

2DA

3DSWarp to
mean shape

Figure 2: AAM Derived features. The AAM tracked result is used
to compute the 2D shape, the shape-free appearance, and the 3D
shape.

5. Classifiers
In this paper, since we are dealing with peak-to-peak recog-
nition, we explored two commonly used classifiers for facial
action recognition [3, 6].

5.1. Nearest Neighbor (NN)
Nearest neighbor (NN) classifiers are typically employed in
scenarios where there are many classes, and there is a mini-
mal amount of training observations for each class (e.g. face
recognition); making them well suited for the task of facial
action recognition. A NN classifier seeks to find of N la-
beled train observations {oi}N

i=1 the single closest observa-
tion to the unlabeled test observation o∗; classifying o∗ as
having the nearest neighbor’s label.

When N is small the choice of distance metric D(a,b)
between observation points becomes especially impor-
tant [12]. One of the most common distance metrics em-
ployed in face recognition and facial action recognition is
the Mahalanobis distance,

D(a,b) = (a − b)T W(a − b) (5)

where a and b are observation vectors being compared
and W is a weighting matrix. It is often advantageous to

attempt to learn W from the train-set. Two common ap-
proaches to learn W are,

Principal Component Analysis (PCA): attempts to find
the K eigenvectors V = {vk}K

k=1, corresponding to
the K largest eigenvalues, of the train-set’s covari-
ance matrix. These K eigenvectors can be thought
of as the K largest modes of linear variation in the
train-set. The weighting matrix can then be defined
as W = VVT . Typically, K << N thereby con-
straining the matching of a and b to a subspace where
training observations have previously spanned.

Linear Discriminant Analysis (LDA): attempts to find
the K eigenvectors V = {vk}K

k=1 of SbS−1
w where Sb

and Sw are the within- and between- class scatter ma-
trices of the train-set. These K eigenvectors can be
thought of as the K largest modes of discrimination
in the train-set. Since SbS−1

w is not symmetrical, we
must employ simultaneous diagonalization [12] to find
the solution. PCA is typically applied before LDA, es-
pecially if the dimensionality of the raw face represen-
tations is large, so as to minimize sample-size noise.

If there is not enough training data and many classes
LDA overfits and can perform poorly, on the other hand
PCA could not be discriminative enough if two classes span
a similar subspace. For the purposes of this paper PCA used
in conjunction with LDA was found to be most suitable for
the task of facial action recognition; we shall refer to this
classifier as NN-LDA.

5.2. Support Vector Machine (SVM)
Support vector machines (SVMs) have been demonstrated
to be extremely useful in a number of pattern recognition
tasks including face and facial action recognition. This type
of classifier attempts to find the hyper-plane that maximizes
the margin between positive and negative observations for
a specified class. A linear SVM classification decision is
made for an unlabeled test observation o∗ by,

wT o∗
true
≷

false
b (6)

where w is the vector normal to the separating hyperplane
and b is the bias. Both w and b were estimated so that they
minimize the structural risk of a train-set. Typically, w is
not defined explicitly, but through a linear sum of support
vectors. As a result SVMs offer additional appeal as they
allow for the employment of non-linear combination func-
tions through the use of kernel functions such as the radial
basis function (RBF), polynomial, sigmoid kernels. A RBF
kernel was used in our experiments throughout this paper

!"#$%%&'()*+#,+-.%+/-.+0(-%"(1-'#(12+3#(,%"%($%+#(+45-#61-'$+71$%+1(&+8%*-5"%+9%$#)('-'#(+:789;<=>+

<?/=@A?BA<C?BD<=+EB<F<<+G+B<<=!!"""#

refer to (i) and (ii) as representation 2DS-NS and 2DS-
A respectively.

2DA: 2D appearance, A(u) representation (see Equation
(2)) of the appearance of the face given a static mean
shape.

3DS: 3D shape, s representation (see Equation (3)) where
the position in 3D of the face and its facial features has
been estimated. Normalization is applied through the
removal of the similarity transform in 3D (i.e. remove
3D translation, scale and rotation).

2DS

2DA

3DSWarp to
mean shape

Figure 2: AAM Derived features. The AAM tracked result is used
to compute the 2D shape, the shape-free appearance, and the 3D
shape.

5. Classifiers
In this paper, since we are dealing with peak-to-peak recog-
nition, we explored two commonly used classifiers for facial
action recognition [3, 6].

5.1. Nearest Neighbor (NN)
Nearest neighbor (NN) classifiers are typically employed in
scenarios where there are many classes, and there is a mini-
mal amount of training observations for each class (e.g. face
recognition); making them well suited for the task of facial
action recognition. A NN classifier seeks to find of N la-
beled train observations {oi}N

i=1 the single closest observa-
tion to the unlabeled test observation o∗; classifying o∗ as
having the nearest neighbor’s label.

When N is small the choice of distance metric D(a,b)
between observation points becomes especially impor-
tant [12]. One of the most common distance metrics em-
ployed in face recognition and facial action recognition is
the Mahalanobis distance,

D(a,b) = (a − b)T W(a − b) (5)

where a and b are observation vectors being compared
and W is a weighting matrix. It is often advantageous to

attempt to learn W from the train-set. Two common ap-
proaches to learn W are,

Principal Component Analysis (PCA): attempts to find
the K eigenvectors V = {vk}K

k=1, corresponding to
the K largest eigenvalues, of the train-set’s covari-
ance matrix. These K eigenvectors can be thought
of as the K largest modes of linear variation in the
train-set. The weighting matrix can then be defined
as W = VVT . Typically, K << N thereby con-
straining the matching of a and b to a subspace where
training observations have previously spanned.

Linear Discriminant Analysis (LDA): attempts to find
the K eigenvectors V = {vk}K

k=1 of SbS−1
w where Sb

and Sw are the within- and between- class scatter ma-
trices of the train-set. These K eigenvectors can be
thought of as the K largest modes of discrimination
in the train-set. Since SbS−1

w is not symmetrical, we
must employ simultaneous diagonalization [12] to find
the solution. PCA is typically applied before LDA, es-
pecially if the dimensionality of the raw face represen-
tations is large, so as to minimize sample-size noise.

If there is not enough training data and many classes
LDA overfits and can perform poorly, on the other hand
PCA could not be discriminative enough if two classes span
a similar subspace. For the purposes of this paper PCA used
in conjunction with LDA was found to be most suitable for
the task of facial action recognition; we shall refer to this
classifier as NN-LDA.

5.2. Support Vector Machine (SVM)
Support vector machines (SVMs) have been demonstrated
to be extremely useful in a number of pattern recognition
tasks including face and facial action recognition. This type
of classifier attempts to find the hyper-plane that maximizes
the margin between positive and negative observations for
a specified class. A linear SVM classification decision is
made for an unlabeled test observation o∗ by,

wT o∗
true
≷

false
b (6)

where w is the vector normal to the separating hyperplane
and b is the bias. Both w and b were estimated so that they
minimize the structural risk of a train-set. Typically, w is
not defined explicitly, but through a linear sum of support
vectors. As a result SVMs offer additional appeal as they
allow for the employment of non-linear combination func-
tions through the use of kernel functions such as the radial
basis function (RBF), polynomial, sigmoid kernels. A RBF
kernel was used in our experiments throughout this paper

!"#$%%&'()*+#,+-.%+/-.+0(-%"(1-'#(12+3#(,%"%($%+#(+45-#61-'$+71$%+1(&+8%*-5"%+9%$#)('-'#(+:789;<=>+

<?/=@A?BA<C?BD<=+EB<F<<+G+B<<=!!"""#

2

64
(x ⇤ g1) � (x ⇤ g1)

...
(x ⇤ gF) � (x ⇤ gF)

3

75

Pinto et al. 2008
Hubel & Wiesel 1962
Serre & Poggio 2007

Lowe 1999

Filter Bank

In the Pursuit of Effective Affective Computing:
Are Features Necessary?

Abstract— All facial expression recognition systems require
some geometric alignment of the face intensity image before
the classification process can occur. Ideally, one would attempt
to perform a “dense” alignment, where a large number (e.g.,
60-70) of fiducial points on the face image are accurately
detected with high accuracy. Up until recently, this type of
dense alignment, however, has been problematic due to poor
reliability and robustness. Instead, many expression detection
methods have relied on a two tier strategy of: (i) employing
a “coarse” alignment where only a few (e.g., 3-4) points on
the face are detected with relatively poor accuracy but high
reliability and robustness, and (ii) using a feature/descriptor
based representation of the coarsely registered image such as
Histogram of Orientated Gradients (HOG) or Gabor magni-
tudes. Recently, however, a number of new algorithms for face
alignment have demonstrated both dense alignment with high
reliability and accuracy (e.g. Constrained Local Models), which
begs the question: what do these features do that standard
pixel representations do not? In this paper we show that when
close to perfect alignment is obtained, there is no real benefit
in employing these different appearance-based representations
in consistent conditions. However, we show that when there is
misalignment these features do work well by encoding robustess
to alignment error. For this work, we compared two automatic
approaches to dense face alignment, subject-dependent (i.e.
active appearance models (AAMs)) vs subject-independent (i.e.
Constrained Local Model (CLM)) and conducted a battery of
experiments across various datasets (i.e. CK+, Pain, RUFACS
and GEMEP) to quantify these effects.

I. INTRODUCTION
Research into affective computing has been very active

over the past decade, mainly due to the vast number of appli-
cations in which it could be useful in (i.e. marketing, human-
computer-interaction, health-care, security, behavioral sci-
ence, car safety etc.). The main goal of this research is
to have a computer system being able to automatically
detect/infer the emotional state of any person based on
various modes (i.e. face, voice, body, actions) in real-time.

The majority of this work has centered on the task of facial
expression detection, mostly by way of individual action unit
(AU) detection. The popular approach to this has been to
first locate and track a person’s face and facial features,
derive a feature representation of the face and then classify
whether or not a frame contains the AU of interest or not
(see Figure 1). In terms of face alignment, this can be done
either coarsely through tracking a couple of key features (i.e.
Viola & Jones [1] type approach where the face and eyes are
tracked) or highly accurately via a deformable model type
approach where a dense mesh of 60-70 points on the face is
used. The latter is desired due to this accuracy in addition
to their ability to infer the 3D pose parameters (i.e. pitch,
yaw and roll) and features (i.e. synthesize frontal view),

PAMI DRAFT - 2009 4

u

v

(1,1)

...

x

y ...

x

y ...

(2,2)

...

...

...

(3,3)

...

...

...

(4,4)

Fig. 1. Visualization of Gabor filter banks in spatial and Fourier domains. The above figure shows individual Gabor filters stemming
from a 4x4 coverage of the spectrum, with each individual filter corresponding to a different orientation and scale. Row 1: Frequency
domain Gabor filters. Row 2: Spatial domain Even filters. Row 3: Spatial domain Odd filters.

referred to as Parseval’s relation which states that,

xT
i xj = x̂T

i x̂j⇥i, j (12)

given that we assume our complex 2D-DFT basis F is or-
thonormal. Based on this formulation learning a linear SVM
in the spatial or Fourier domain should be identical.

5 RE-INTERPRETING LINEAR FILTERS
Taking the results from Sections 3 and 4 it is possible to
re-interpret the learning of an SVM with concatenated filter
responses zi in the spatial domain as being equivalent to
learning the support weight vector � in the dual problem,

max
0⇥�i⇥C

l⇤

i=1

�i �
1
2

l⇤

i=1

l⇤

j=1

�i�jyiyjx̂T
i Sx̂j (13)

subject to
l⇤

i=1

yi�i = 0

where x̂i is the 2D-DFT of the vectorized training image xi

and S is the diagonal weighting matrix of filters estimated in
Equation 8. Equivalently, one can view the prime problem as,

min
ŵ

1
2
ŵTS�1ŵ + C

l⇤

i=1

[1� yiŵT x̂i]+ (14)

where we can now view the SVM as attempting to maximize
the weighted Euclidean distance margin, inversely proportional
to ŵTS�1ŵ, in a N dimensional Fourier space. This is in
contrast to the canonical viewpoint that attempts to maximize
the Euclidean distance margin for an SVM in a NM dimen-
sional spatial filter response space. A major disadvantage to
the latter viewpoint is that memory storage and computational
cost are directly linked to the number of filter banks M
being employed. In our new viewpoint the matrix S can be
pre-computed before learning, making the equivalent learning
process now independent of M . It is interesting to note that in

Equation 14 we are only manipulating the margin term, while
the form of the hinge error term remains the same.

5.1 Training with Complex Vectors
One problem, however, with our proposed computationally
efficient approach to learning a Gabor filtered linear SVM
is that learning has to occur in the Fourier rather than the
spatial domain. This means that an SVM has to be learnt
using complex (real and imaginary) vectors rather than just
real vectors obtained from the spatial image domain. At first
glance learning an SVM with complex Fourier vectors may
seem problematic and require SVM software specifically for
learning in the Fourier domain as: (i) in general the inner prod-
uct between two complex vectors is itself a complex number,
and (ii) most existing SVM packages (e.g., LibSVM [16]) can
handle only real vectors during training.
Fortunately, the first problem can be automatically circum-

vented through Parseval’s relation which guarantees that the
inner product in the Fourier domain is equivalent to the inner
product in the spatial domain. Since the spatial images are all
real, then the inner product in the Fourier domain must also
be real. The second problem can also be easily circumvented
through the realization that for any two Fourier complex
vectors x̂i and x̂j derived from spatial signals/images xi

and xj respectively the following equivalence holds,

x̂T
i x̂j =

�
Re{x̂i}
Im{x̂i}

⇥T �
Re{x̂j}
Im{x̂j}

⇥
(15)

a proof of this equivalence can be found in the Appendix.
Based on this equivalence one can replace any N dimensional
complex Fourier vector, equivalently, with a 2N dimensional
real vector where the real and imaginary components have
been concatenated into a single vector. Since the inner products
will be identical, according to the dual of the SVM objective
function, the estimated support weights should be identical.
This equivalence greatly simplifies the learning of the linear

3.3. TRAINING APPLICATIONS 43

Figure 3.2: AFERS at various states. Row-wise from top-left to bottom-right:
Initial display, neutral, joy, disgust, surprise, contempt.

(a) (b) (c)

(a) (b)

(d)

Monday, September 27, 2010

Fig. 1: Most facial expression systems (a) align the face and
facial features (i.e. either coarse registration (i.e. face and eyes)
or deformable models using dense mesh (i.e. subject-dependent
approach (AAM) or subject-independent approach (CLM). After
tracking, an image of the face is obtained and this image may
or may not be post-processed (b) (e.g. Gabor filter bank) to
gain a feature representation (c). These features are then used for
classifcation (d).

which is ideal in situations where there is a lot of head
movement, especially out-of-plane head rotations. Subject-
dependent active appearance models (AAMs) [2], [3] have
been widely used in this field [4], [5], [6], [7] for those
reasons but this approach requires manual labeling of key
frames of the target sequence (up to 5% of frames). For
applications where manually labeling frames is prohibitive
(e.g. marketing, security/law enforcement, health-care and
HCI), a more generic or subject-independent face alignment
approach is required. One such approach is the constrained
local model (CLM) method developed by Saragih et al. [8].
The CLM leverages the generalization capacity of local patch
experts and the constraint over joint deformation provided by
a point distribution model (PDM). It is similar to AAMs in
the fact that it tracks a dense mesh of points on the face that
produce both shape and appearance features, but through the
utilization of these patches it has been shown to work well
for the subject-independent case (i.e. unseen subjects).

Once the face has been tracked, the normal convention is
to apply a bank of filters, followed by a rectification step,
contrast normalization, and then a pooling/subsampling strat-
egy. For example, the popular Histogram of Orientated Gra-
dients (HOG) [9], [10], [11], [12], and Gabor magnitude [11],
[12], [13] descriptors readily fit into this parametric form.
These features have been widely used due to their biological
relevance, their ability to encode edges and texture, and their
invariance to illumination. An inherent problem with this
method is the large memory and computational overheads
required for training and testing these filter banks. Other
than cases where their is extreme illumination variation,
which is unlikely for the vast majority of applications of this
technology at the moment (i.e. the environment should be

RectificationFilter Bank

|| . ||

Pooling

local average

"coarse"
"alignment"
"warping"

"dense"
"alignment"
"warping"

In the Pursuit of Effective Affective Computing:
Are Features Necessary?

Abstract— All facial expression recognition systems require
some geometric alignment of the face intensity image before
the classification process can occur. Ideally, one would attempt
to perform a “dense” alignment, where a large number (e.g.,
60-70) of fiducial points on the face image are accurately
detected with high accuracy. Up until recently, this type of
dense alignment, however, has been problematic due to poor
reliability and robustness. Instead, many expression detection
methods have relied on a two tier strategy of: (i) employing
a “coarse” alignment where only a few (e.g., 3-4) points on
the face are detected with relatively poor accuracy but high
reliability and robustness, and (ii) using a feature/descriptor
based representation of the coarsely registered image such as
Histogram of Orientated Gradients (HOG) or Gabor magni-
tudes. Recently, however, a number of new algorithms for face
alignment have demonstrated both dense alignment with high
reliability and accuracy (e.g. Constrained Local Models), which
begs the question: what do these features do that standard
pixel representations do not? In this paper we show that when
close to perfect alignment is obtained, there is no real benefit
in employing these different appearance-based representations
in consistent conditions. However, we show that when there is
misalignment these features do work well by encoding robustess
to alignment error. For this work, we compared two automatic
approaches to dense face alignment, subject-dependent (i.e.
active appearance models (AAMs)) vs subject-independent (i.e.
Constrained Local Model (CLM)) and conducted a battery of
experiments across various datasets (i.e. CK+, Pain, RUFACS
and GEMEP) to quantify these effects.

I. INTRODUCTION
Research into affective computing has been very active

over the past decade, mainly due to the vast number of appli-
cations in which it could be useful in (i.e. marketing, human-
computer-interaction, health-care, security, behavioral sci-
ence, car safety etc.). The main goal of this research is
to have a computer system being able to automatically
detect/infer the emotional state of any person based on
various modes (i.e. face, voice, body, actions) in real-time.

The majority of this work has centered on the task of facial
expression detection, mostly by way of individual action unit
(AU) detection. The popular approach to this has been to
first locate and track a person’s face and facial features,
derive a feature representation of the face and then classify
whether or not a frame contains the AU of interest or not
(see Figure 1). In terms of face alignment, this can be done
either coarsely through tracking a couple of key features (i.e.
Viola & Jones [1] type approach where the face and eyes are
tracked) or highly accurately via a deformable model type
approach where a dense mesh of 60-70 points on the face is
used. The latter is desired due to this accuracy in addition
to their ability to infer the 3D pose parameters (i.e. pitch,
yaw and roll) and features (i.e. synthesize frontal view),

PAMI DRAFT - 2009 4

u

v

(1,1)

...

x

y ...

x

y ...

(2,2)

...

...

...

(3,3)

...

...

...

(4,4)

Fig. 1. Visualization of Gabor filter banks in spatial and Fourier domains. The above figure shows individual Gabor filters stemming
from a 4x4 coverage of the spectrum, with each individual filter corresponding to a different orientation and scale. Row 1: Frequency
domain Gabor filters. Row 2: Spatial domain Even filters. Row 3: Spatial domain Odd filters.

referred to as Parseval’s relation which states that,

xT
i xj = x̂T

i x̂j⇥i, j (12)

given that we assume our complex 2D-DFT basis F is or-
thonormal. Based on this formulation learning a linear SVM
in the spatial or Fourier domain should be identical.

5 RE-INTERPRETING LINEAR FILTERS
Taking the results from Sections 3 and 4 it is possible to
re-interpret the learning of an SVM with concatenated filter
responses zi in the spatial domain as being equivalent to
learning the support weight vector � in the dual problem,

max
0⇥�i⇥C

l⇤

i=1

�i �
1
2

l⇤

i=1

l⇤

j=1

�i�jyiyjx̂T
i Sx̂j (13)

subject to
l⇤

i=1

yi�i = 0

where x̂i is the 2D-DFT of the vectorized training image xi

and S is the diagonal weighting matrix of filters estimated in
Equation 8. Equivalently, one can view the prime problem as,

min
ŵ

1
2
ŵTS�1ŵ + C

l⇤

i=1

[1� yiŵT x̂i]+ (14)

where we can now view the SVM as attempting to maximize
the weighted Euclidean distance margin, inversely proportional
to ŵTS�1ŵ, in a N dimensional Fourier space. This is in
contrast to the canonical viewpoint that attempts to maximize
the Euclidean distance margin for an SVM in a NM dimen-
sional spatial filter response space. A major disadvantage to
the latter viewpoint is that memory storage and computational
cost are directly linked to the number of filter banks M
being employed. In our new viewpoint the matrix S can be
pre-computed before learning, making the equivalent learning
process now independent of M . It is interesting to note that in

Equation 14 we are only manipulating the margin term, while
the form of the hinge error term remains the same.

5.1 Training with Complex Vectors
One problem, however, with our proposed computationally
efficient approach to learning a Gabor filtered linear SVM
is that learning has to occur in the Fourier rather than the
spatial domain. This means that an SVM has to be learnt
using complex (real and imaginary) vectors rather than just
real vectors obtained from the spatial image domain. At first
glance learning an SVM with complex Fourier vectors may
seem problematic and require SVM software specifically for
learning in the Fourier domain as: (i) in general the inner prod-
uct between two complex vectors is itself a complex number,
and (ii) most existing SVM packages (e.g., LibSVM [16]) can
handle only real vectors during training.
Fortunately, the first problem can be automatically circum-

vented through Parseval’s relation which guarantees that the
inner product in the Fourier domain is equivalent to the inner
product in the spatial domain. Since the spatial images are all
real, then the inner product in the Fourier domain must also
be real. The second problem can also be easily circumvented
through the realization that for any two Fourier complex
vectors x̂i and x̂j derived from spatial signals/images xi

and xj respectively the following equivalence holds,

x̂T
i x̂j =

�
Re{x̂i}
Im{x̂i}

⇥T �
Re{x̂j}
Im{x̂j}

⇥
(15)

a proof of this equivalence can be found in the Appendix.
Based on this equivalence one can replace any N dimensional
complex Fourier vector, equivalently, with a 2N dimensional
real vector where the real and imaginary components have
been concatenated into a single vector. Since the inner products
will be identical, according to the dual of the SVM objective
function, the estimated support weights should be identical.
This equivalence greatly simplifies the learning of the linear

3.3. TRAINING APPLICATIONS 43

Figure 3.2: AFERS at various states. Row-wise from top-left to bottom-right:
Initial display, neutral, joy, disgust, surprise, contempt.

(a) (b) (c)

(a) (b)

(d)

Monday, September 27, 2010

Fig. 1: Most facial expression systems (a) align the face and
facial features (i.e. either coarse registration (i.e. face and eyes)
or deformable models using dense mesh (i.e. subject-dependent
approach (AAM) or subject-independent approach (CLM). After
tracking, an image of the face is obtained and this image may
or may not be post-processed (b) (e.g. Gabor filter bank) to
gain a feature representation (c). These features are then used for
classifcation (d).

which is ideal in situations where there is a lot of head
movement, especially out-of-plane head rotations. Subject-
dependent active appearance models (AAMs) [2], [3] have
been widely used in this field [4], [5], [6], [7] for those
reasons but this approach requires manual labeling of key
frames of the target sequence (up to 5% of frames). For
applications where manually labeling frames is prohibitive
(e.g. marketing, security/law enforcement, health-care and
HCI), a more generic or subject-independent face alignment
approach is required. One such approach is the constrained
local model (CLM) method developed by Saragih et al. [8].
The CLM leverages the generalization capacity of local patch
experts and the constraint over joint deformation provided by
a point distribution model (PDM). It is similar to AAMs in
the fact that it tracks a dense mesh of points on the face that
produce both shape and appearance features, but through the
utilization of these patches it has been shown to work well
for the subject-independent case (i.e. unseen subjects).

Once the face has been tracked, the normal convention is
to apply a bank of filters, followed by a rectification step,
contrast normalization, and then a pooling/subsampling strat-
egy. For example, the popular Histogram of Orientated Gra-
dients (HOG) [9], [10], [11], [12], and Gabor magnitude [11],
[12], [13] descriptors readily fit into this parametric form.
These features have been widely used due to their biological
relevance, their ability to encode edges and texture, and their
invariance to illumination. An inherent problem with this
method is the large memory and computational overheads
required for training and testing these filter banks. Other
than cases where their is extreme illumination variation,
which is unlikely for the vast majority of applications of this
technology at the moment (i.e. the environment should be

Linear SVM

(b)

(a)

x � RD

Rectification Pooling

x � RD

refer to (i) and (ii) as representation 2DS-NS and 2DS-
A respectively.

2DA: 2D appearance, A(u) representation (see Equation
(2)) of the appearance of the face given a static mean
shape.

3DS: 3D shape, s representation (see Equation (3)) where
the position in 3D of the face and its facial features has
been estimated. Normalization is applied through the
removal of the similarity transform in 3D (i.e. remove
3D translation, scale and rotation).

2DS

2DA

3DSWarp to
mean shape

Figure 2: AAM Derived features. The AAM tracked result is used
to compute the 2D shape, the shape-free appearance, and the 3D
shape.

5. Classifiers
In this paper, since we are dealing with peak-to-peak recog-
nition, we explored two commonly used classifiers for facial
action recognition [3, 6].

5.1. Nearest Neighbor (NN)
Nearest neighbor (NN) classifiers are typically employed in
scenarios where there are many classes, and there is a mini-
mal amount of training observations for each class (e.g. face
recognition); making them well suited for the task of facial
action recognition. A NN classifier seeks to find of N la-
beled train observations {oi}N

i=1 the single closest observa-
tion to the unlabeled test observation o∗; classifying o∗ as
having the nearest neighbor’s label.

When N is small the choice of distance metric D(a,b)
between observation points becomes especially impor-
tant [12]. One of the most common distance metrics em-
ployed in face recognition and facial action recognition is
the Mahalanobis distance,

D(a,b) = (a − b)T W(a − b) (5)

where a and b are observation vectors being compared
and W is a weighting matrix. It is often advantageous to

attempt to learn W from the train-set. Two common ap-
proaches to learn W are,

Principal Component Analysis (PCA): attempts to find
the K eigenvectors V = {vk}K

k=1, corresponding to
the K largest eigenvalues, of the train-set’s covari-
ance matrix. These K eigenvectors can be thought
of as the K largest modes of linear variation in the
train-set. The weighting matrix can then be defined
as W = VVT . Typically, K << N thereby con-
straining the matching of a and b to a subspace where
training observations have previously spanned.

Linear Discriminant Analysis (LDA): attempts to find
the K eigenvectors V = {vk}K

k=1 of SbS−1
w where Sb

and Sw are the within- and between- class scatter ma-
trices of the train-set. These K eigenvectors can be
thought of as the K largest modes of discrimination
in the train-set. Since SbS−1

w is not symmetrical, we
must employ simultaneous diagonalization [12] to find
the solution. PCA is typically applied before LDA, es-
pecially if the dimensionality of the raw face represen-
tations is large, so as to minimize sample-size noise.

If there is not enough training data and many classes
LDA overfits and can perform poorly, on the other hand
PCA could not be discriminative enough if two classes span
a similar subspace. For the purposes of this paper PCA used
in conjunction with LDA was found to be most suitable for
the task of facial action recognition; we shall refer to this
classifier as NN-LDA.

5.2. Support Vector Machine (SVM)
Support vector machines (SVMs) have been demonstrated
to be extremely useful in a number of pattern recognition
tasks including face and facial action recognition. This type
of classifier attempts to find the hyper-plane that maximizes
the margin between positive and negative observations for
a specified class. A linear SVM classification decision is
made for an unlabeled test observation o∗ by,

wT o∗
true
≷

false
b (6)

where w is the vector normal to the separating hyperplane
and b is the bias. Both w and b were estimated so that they
minimize the structural risk of a train-set. Typically, w is
not defined explicitly, but through a linear sum of support
vectors. As a result SVMs offer additional appeal as they
allow for the employment of non-linear combination func-
tions through the use of kernel functions such as the radial
basis function (RBF), polynomial, sigmoid kernels. A RBF
kernel was used in our experiments throughout this paper

!"#$%%&'()*+#,+-.%+/-.+0(-%"(1-'#(12+3#(,%"%($%+#(+45-#61-'$+71$%+1(&+8%*-5"%+9%$#)('-'#(+:789;<=>+

<?/=@A?BA<C?BD<=+EB<F<<+G+B<<=!!"""#

refer to (i) and (ii) as representation 2DS-NS and 2DS-
A respectively.

2DA: 2D appearance, A(u) representation (see Equation
(2)) of the appearance of the face given a static mean
shape.

3DS: 3D shape, s representation (see Equation (3)) where
the position in 3D of the face and its facial features has
been estimated. Normalization is applied through the
removal of the similarity transform in 3D (i.e. remove
3D translation, scale and rotation).

2DS

2DA

3DSWarp to
mean shape

Figure 2: AAM Derived features. The AAM tracked result is used
to compute the 2D shape, the shape-free appearance, and the 3D
shape.

5. Classifiers
In this paper, since we are dealing with peak-to-peak recog-
nition, we explored two commonly used classifiers for facial
action recognition [3, 6].

5.1. Nearest Neighbor (NN)
Nearest neighbor (NN) classifiers are typically employed in
scenarios where there are many classes, and there is a mini-
mal amount of training observations for each class (e.g. face
recognition); making them well suited for the task of facial
action recognition. A NN classifier seeks to find of N la-
beled train observations {oi}N

i=1 the single closest observa-
tion to the unlabeled test observation o∗; classifying o∗ as
having the nearest neighbor’s label.

When N is small the choice of distance metric D(a,b)
between observation points becomes especially impor-
tant [12]. One of the most common distance metrics em-
ployed in face recognition and facial action recognition is
the Mahalanobis distance,

D(a,b) = (a − b)T W(a − b) (5)

where a and b are observation vectors being compared
and W is a weighting matrix. It is often advantageous to

attempt to learn W from the train-set. Two common ap-
proaches to learn W are,

Principal Component Analysis (PCA): attempts to find
the K eigenvectors V = {vk}K

k=1, corresponding to
the K largest eigenvalues, of the train-set’s covari-
ance matrix. These K eigenvectors can be thought
of as the K largest modes of linear variation in the
train-set. The weighting matrix can then be defined
as W = VVT . Typically, K << N thereby con-
straining the matching of a and b to a subspace where
training observations have previously spanned.

Linear Discriminant Analysis (LDA): attempts to find
the K eigenvectors V = {vk}K

k=1 of SbS−1
w where Sb

and Sw are the within- and between- class scatter ma-
trices of the train-set. These K eigenvectors can be
thought of as the K largest modes of discrimination
in the train-set. Since SbS−1

w is not symmetrical, we
must employ simultaneous diagonalization [12] to find
the solution. PCA is typically applied before LDA, es-
pecially if the dimensionality of the raw face represen-
tations is large, so as to minimize sample-size noise.

If there is not enough training data and many classes
LDA overfits and can perform poorly, on the other hand
PCA could not be discriminative enough if two classes span
a similar subspace. For the purposes of this paper PCA used
in conjunction with LDA was found to be most suitable for
the task of facial action recognition; we shall refer to this
classifier as NN-LDA.

5.2. Support Vector Machine (SVM)
Support vector machines (SVMs) have been demonstrated
to be extremely useful in a number of pattern recognition
tasks including face and facial action recognition. This type
of classifier attempts to find the hyper-plane that maximizes
the margin between positive and negative observations for
a specified class. A linear SVM classification decision is
made for an unlabeled test observation o∗ by,

wT o∗
true
≷

false
b (6)

where w is the vector normal to the separating hyperplane
and b is the bias. Both w and b were estimated so that they
minimize the structural risk of a train-set. Typically, w is
not defined explicitly, but through a linear sum of support
vectors. As a result SVMs offer additional appeal as they
allow for the employment of non-linear combination func-
tions through the use of kernel functions such as the radial
basis function (RBF), polynomial, sigmoid kernels. A RBF
kernel was used in our experiments throughout this paper

!"#$%%&'()*+#,+-.%+/-.+0(-%"(1-'#(12+3#(,%"%($%+#(+45-#61-'$+71$%+1(&+8%*-5"%+9%$#)('-'#(+:789;<=>+

<?/=@A?BA<C?BD<=+EB<F<<+G+B<<=!!"""#

Pinto et al. 2008
Hubel & Wiesel 1962
Serre & Poggio 2007

Lowe 1999

Filter Bank

In the Pursuit of Effective Affective Computing:
Are Features Necessary?

Abstract— All facial expression recognition systems require
some geometric alignment of the face intensity image before
the classification process can occur. Ideally, one would attempt
to perform a “dense” alignment, where a large number (e.g.,
60-70) of fiducial points on the face image are accurately
detected with high accuracy. Up until recently, this type of
dense alignment, however, has been problematic due to poor
reliability and robustness. Instead, many expression detection
methods have relied on a two tier strategy of: (i) employing
a “coarse” alignment where only a few (e.g., 3-4) points on
the face are detected with relatively poor accuracy but high
reliability and robustness, and (ii) using a feature/descriptor
based representation of the coarsely registered image such as
Histogram of Orientated Gradients (HOG) or Gabor magni-
tudes. Recently, however, a number of new algorithms for face
alignment have demonstrated both dense alignment with high
reliability and accuracy (e.g. Constrained Local Models), which
begs the question: what do these features do that standard
pixel representations do not? In this paper we show that when
close to perfect alignment is obtained, there is no real benefit
in employing these different appearance-based representations
in consistent conditions. However, we show that when there is
misalignment these features do work well by encoding robustess
to alignment error. For this work, we compared two automatic
approaches to dense face alignment, subject-dependent (i.e.
active appearance models (AAMs)) vs subject-independent (i.e.
Constrained Local Model (CLM)) and conducted a battery of
experiments across various datasets (i.e. CK+, Pain, RUFACS
and GEMEP) to quantify these effects.

I. INTRODUCTION
Research into affective computing has been very active

over the past decade, mainly due to the vast number of appli-
cations in which it could be useful in (i.e. marketing, human-
computer-interaction, health-care, security, behavioral sci-
ence, car safety etc.). The main goal of this research is
to have a computer system being able to automatically
detect/infer the emotional state of any person based on
various modes (i.e. face, voice, body, actions) in real-time.

The majority of this work has centered on the task of facial
expression detection, mostly by way of individual action unit
(AU) detection. The popular approach to this has been to
first locate and track a person’s face and facial features,
derive a feature representation of the face and then classify
whether or not a frame contains the AU of interest or not
(see Figure 1). In terms of face alignment, this can be done
either coarsely through tracking a couple of key features (i.e.
Viola & Jones [1] type approach where the face and eyes are
tracked) or highly accurately via a deformable model type
approach where a dense mesh of 60-70 points on the face is
used. The latter is desired due to this accuracy in addition
to their ability to infer the 3D pose parameters (i.e. pitch,
yaw and roll) and features (i.e. synthesize frontal view),

PAMI DRAFT - 2009 4

u

v

(1,1)

...

x

y ...

x

y ...

(2,2)

...

...

...

(3,3)

...

...

...

(4,4)

Fig. 1. Visualization of Gabor filter banks in spatial and Fourier domains. The above figure shows individual Gabor filters stemming
from a 4x4 coverage of the spectrum, with each individual filter corresponding to a different orientation and scale. Row 1: Frequency
domain Gabor filters. Row 2: Spatial domain Even filters. Row 3: Spatial domain Odd filters.

referred to as Parseval’s relation which states that,

xT
i xj = x̂T

i x̂j⇥i, j (12)

given that we assume our complex 2D-DFT basis F is or-
thonormal. Based on this formulation learning a linear SVM
in the spatial or Fourier domain should be identical.

5 RE-INTERPRETING LINEAR FILTERS
Taking the results from Sections 3 and 4 it is possible to
re-interpret the learning of an SVM with concatenated filter
responses zi in the spatial domain as being equivalent to
learning the support weight vector � in the dual problem,

max
0⇥�i⇥C

l⇤

i=1

�i �
1
2

l⇤

i=1

l⇤

j=1

�i�jyiyjx̂T
i Sx̂j (13)

subject to
l⇤

i=1

yi�i = 0

where x̂i is the 2D-DFT of the vectorized training image xi

and S is the diagonal weighting matrix of filters estimated in
Equation 8. Equivalently, one can view the prime problem as,

min
ŵ

1
2
ŵTS�1ŵ + C

l⇤

i=1

[1� yiŵT x̂i]+ (14)

where we can now view the SVM as attempting to maximize
the weighted Euclidean distance margin, inversely proportional
to ŵTS�1ŵ, in a N dimensional Fourier space. This is in
contrast to the canonical viewpoint that attempts to maximize
the Euclidean distance margin for an SVM in a NM dimen-
sional spatial filter response space. A major disadvantage to
the latter viewpoint is that memory storage and computational
cost are directly linked to the number of filter banks M
being employed. In our new viewpoint the matrix S can be
pre-computed before learning, making the equivalent learning
process now independent of M . It is interesting to note that in

Equation 14 we are only manipulating the margin term, while
the form of the hinge error term remains the same.

5.1 Training with Complex Vectors
One problem, however, with our proposed computationally
efficient approach to learning a Gabor filtered linear SVM
is that learning has to occur in the Fourier rather than the
spatial domain. This means that an SVM has to be learnt
using complex (real and imaginary) vectors rather than just
real vectors obtained from the spatial image domain. At first
glance learning an SVM with complex Fourier vectors may
seem problematic and require SVM software specifically for
learning in the Fourier domain as: (i) in general the inner prod-
uct between two complex vectors is itself a complex number,
and (ii) most existing SVM packages (e.g., LibSVM [16]) can
handle only real vectors during training.
Fortunately, the first problem can be automatically circum-

vented through Parseval’s relation which guarantees that the
inner product in the Fourier domain is equivalent to the inner
product in the spatial domain. Since the spatial images are all
real, then the inner product in the Fourier domain must also
be real. The second problem can also be easily circumvented
through the realization that for any two Fourier complex
vectors x̂i and x̂j derived from spatial signals/images xi

and xj respectively the following equivalence holds,

x̂T
i x̂j =

�
Re{x̂i}
Im{x̂i}

⇥T �
Re{x̂j}
Im{x̂j}

⇥
(15)

a proof of this equivalence can be found in the Appendix.
Based on this equivalence one can replace any N dimensional
complex Fourier vector, equivalently, with a 2N dimensional
real vector where the real and imaginary components have
been concatenated into a single vector. Since the inner products
will be identical, according to the dual of the SVM objective
function, the estimated support weights should be identical.
This equivalence greatly simplifies the learning of the linear

3.3. TRAINING APPLICATIONS 43

Figure 3.2: AFERS at various states. Row-wise from top-left to bottom-right:
Initial display, neutral, joy, disgust, surprise, contempt.

(a) (b) (c)

(a) (b)

(d)

Monday, September 27, 2010

Fig. 1: Most facial expression systems (a) align the face and
facial features (i.e. either coarse registration (i.e. face and eyes)
or deformable models using dense mesh (i.e. subject-dependent
approach (AAM) or subject-independent approach (CLM). After
tracking, an image of the face is obtained and this image may
or may not be post-processed (b) (e.g. Gabor filter bank) to
gain a feature representation (c). These features are then used for
classifcation (d).

which is ideal in situations where there is a lot of head
movement, especially out-of-plane head rotations. Subject-
dependent active appearance models (AAMs) [2], [3] have
been widely used in this field [4], [5], [6], [7] for those
reasons but this approach requires manual labeling of key
frames of the target sequence (up to 5% of frames). For
applications where manually labeling frames is prohibitive
(e.g. marketing, security/law enforcement, health-care and
HCI), a more generic or subject-independent face alignment
approach is required. One such approach is the constrained
local model (CLM) method developed by Saragih et al. [8].
The CLM leverages the generalization capacity of local patch
experts and the constraint over joint deformation provided by
a point distribution model (PDM). It is similar to AAMs in
the fact that it tracks a dense mesh of points on the face that
produce both shape and appearance features, but through the
utilization of these patches it has been shown to work well
for the subject-independent case (i.e. unseen subjects).

Once the face has been tracked, the normal convention is
to apply a bank of filters, followed by a rectification step,
contrast normalization, and then a pooling/subsampling strat-
egy. For example, the popular Histogram of Orientated Gra-
dients (HOG) [9], [10], [11], [12], and Gabor magnitude [11],
[12], [13] descriptors readily fit into this parametric form.
These features have been widely used due to their biological
relevance, their ability to encode edges and texture, and their
invariance to illumination. An inherent problem with this
method is the large memory and computational overheads
required for training and testing these filter banks. Other
than cases where their is extreme illumination variation,
which is unlikely for the vast majority of applications of this
technology at the moment (i.e. the environment should be

RectificationFilter Bank

|| . ||

Pooling

local average

"coarse"
"alignment"
"warping"

"dense"
"alignment"
"warping"

In the Pursuit of Effective Affective Computing:
Are Features Necessary?

Abstract— All facial expression recognition systems require
some geometric alignment of the face intensity image before
the classification process can occur. Ideally, one would attempt
to perform a “dense” alignment, where a large number (e.g.,
60-70) of fiducial points on the face image are accurately
detected with high accuracy. Up until recently, this type of
dense alignment, however, has been problematic due to poor
reliability and robustness. Instead, many expression detection
methods have relied on a two tier strategy of: (i) employing
a “coarse” alignment where only a few (e.g., 3-4) points on
the face are detected with relatively poor accuracy but high
reliability and robustness, and (ii) using a feature/descriptor
based representation of the coarsely registered image such as
Histogram of Orientated Gradients (HOG) or Gabor magni-
tudes. Recently, however, a number of new algorithms for face
alignment have demonstrated both dense alignment with high
reliability and accuracy (e.g. Constrained Local Models), which
begs the question: what do these features do that standard
pixel representations do not? In this paper we show that when
close to perfect alignment is obtained, there is no real benefit
in employing these different appearance-based representations
in consistent conditions. However, we show that when there is
misalignment these features do work well by encoding robustess
to alignment error. For this work, we compared two automatic
approaches to dense face alignment, subject-dependent (i.e.
active appearance models (AAMs)) vs subject-independent (i.e.
Constrained Local Model (CLM)) and conducted a battery of
experiments across various datasets (i.e. CK+, Pain, RUFACS
and GEMEP) to quantify these effects.

I. INTRODUCTION
Research into affective computing has been very active

over the past decade, mainly due to the vast number of appli-
cations in which it could be useful in (i.e. marketing, human-
computer-interaction, health-care, security, behavioral sci-
ence, car safety etc.). The main goal of this research is
to have a computer system being able to automatically
detect/infer the emotional state of any person based on
various modes (i.e. face, voice, body, actions) in real-time.

The majority of this work has centered on the task of facial
expression detection, mostly by way of individual action unit
(AU) detection. The popular approach to this has been to
first locate and track a person’s face and facial features,
derive a feature representation of the face and then classify
whether or not a frame contains the AU of interest or not
(see Figure 1). In terms of face alignment, this can be done
either coarsely through tracking a couple of key features (i.e.
Viola & Jones [1] type approach where the face and eyes are
tracked) or highly accurately via a deformable model type
approach where a dense mesh of 60-70 points on the face is
used. The latter is desired due to this accuracy in addition
to their ability to infer the 3D pose parameters (i.e. pitch,
yaw and roll) and features (i.e. synthesize frontal view),

PAMI DRAFT - 2009 4

u

v

(1,1)

...

x

y ...

x

y ...

(2,2)

...

...

...

(3,3)

...

...

...

(4,4)

Fig. 1. Visualization of Gabor filter banks in spatial and Fourier domains. The above figure shows individual Gabor filters stemming
from a 4x4 coverage of the spectrum, with each individual filter corresponding to a different orientation and scale. Row 1: Frequency
domain Gabor filters. Row 2: Spatial domain Even filters. Row 3: Spatial domain Odd filters.

referred to as Parseval’s relation which states that,

xT
i xj = x̂T

i x̂j⇥i, j (12)

given that we assume our complex 2D-DFT basis F is or-
thonormal. Based on this formulation learning a linear SVM
in the spatial or Fourier domain should be identical.

5 RE-INTERPRETING LINEAR FILTERS
Taking the results from Sections 3 and 4 it is possible to
re-interpret the learning of an SVM with concatenated filter
responses zi in the spatial domain as being equivalent to
learning the support weight vector � in the dual problem,

max
0⇥�i⇥C

l⇤

i=1

�i �
1
2

l⇤

i=1

l⇤

j=1

�i�jyiyjx̂T
i Sx̂j (13)

subject to
l⇤

i=1

yi�i = 0

where x̂i is the 2D-DFT of the vectorized training image xi

and S is the diagonal weighting matrix of filters estimated in
Equation 8. Equivalently, one can view the prime problem as,

min
ŵ

1
2
ŵTS�1ŵ + C

l⇤

i=1

[1� yiŵT x̂i]+ (14)

where we can now view the SVM as attempting to maximize
the weighted Euclidean distance margin, inversely proportional
to ŵTS�1ŵ, in a N dimensional Fourier space. This is in
contrast to the canonical viewpoint that attempts to maximize
the Euclidean distance margin for an SVM in a NM dimen-
sional spatial filter response space. A major disadvantage to
the latter viewpoint is that memory storage and computational
cost are directly linked to the number of filter banks M
being employed. In our new viewpoint the matrix S can be
pre-computed before learning, making the equivalent learning
process now independent of M . It is interesting to note that in

Equation 14 we are only manipulating the margin term, while
the form of the hinge error term remains the same.

5.1 Training with Complex Vectors
One problem, however, with our proposed computationally
efficient approach to learning a Gabor filtered linear SVM
is that learning has to occur in the Fourier rather than the
spatial domain. This means that an SVM has to be learnt
using complex (real and imaginary) vectors rather than just
real vectors obtained from the spatial image domain. At first
glance learning an SVM with complex Fourier vectors may
seem problematic and require SVM software specifically for
learning in the Fourier domain as: (i) in general the inner prod-
uct between two complex vectors is itself a complex number,
and (ii) most existing SVM packages (e.g., LibSVM [16]) can
handle only real vectors during training.
Fortunately, the first problem can be automatically circum-

vented through Parseval’s relation which guarantees that the
inner product in the Fourier domain is equivalent to the inner
product in the spatial domain. Since the spatial images are all
real, then the inner product in the Fourier domain must also
be real. The second problem can also be easily circumvented
through the realization that for any two Fourier complex
vectors x̂i and x̂j derived from spatial signals/images xi

and xj respectively the following equivalence holds,

x̂T
i x̂j =

�
Re{x̂i}
Im{x̂i}

⇥T �
Re{x̂j}
Im{x̂j}

⇥
(15)

a proof of this equivalence can be found in the Appendix.
Based on this equivalence one can replace any N dimensional
complex Fourier vector, equivalently, with a 2N dimensional
real vector where the real and imaginary components have
been concatenated into a single vector. Since the inner products
will be identical, according to the dual of the SVM objective
function, the estimated support weights should be identical.
This equivalence greatly simplifies the learning of the linear

3.3. TRAINING APPLICATIONS 43

Figure 3.2: AFERS at various states. Row-wise from top-left to bottom-right:
Initial display, neutral, joy, disgust, surprise, contempt.

(a) (b) (c)

(a) (b)

(d)

Monday, September 27, 2010

Fig. 1: Most facial expression systems (a) align the face and
facial features (i.e. either coarse registration (i.e. face and eyes)
or deformable models using dense mesh (i.e. subject-dependent
approach (AAM) or subject-independent approach (CLM). After
tracking, an image of the face is obtained and this image may
or may not be post-processed (b) (e.g. Gabor filter bank) to
gain a feature representation (c). These features are then used for
classifcation (d).

which is ideal in situations where there is a lot of head
movement, especially out-of-plane head rotations. Subject-
dependent active appearance models (AAMs) [2], [3] have
been widely used in this field [4], [5], [6], [7] for those
reasons but this approach requires manual labeling of key
frames of the target sequence (up to 5% of frames). For
applications where manually labeling frames is prohibitive
(e.g. marketing, security/law enforcement, health-care and
HCI), a more generic or subject-independent face alignment
approach is required. One such approach is the constrained
local model (CLM) method developed by Saragih et al. [8].
The CLM leverages the generalization capacity of local patch
experts and the constraint over joint deformation provided by
a point distribution model (PDM). It is similar to AAMs in
the fact that it tracks a dense mesh of points on the face that
produce both shape and appearance features, but through the
utilization of these patches it has been shown to work well
for the subject-independent case (i.e. unseen subjects).

Once the face has been tracked, the normal convention is
to apply a bank of filters, followed by a rectification step,
contrast normalization, and then a pooling/subsampling strat-
egy. For example, the popular Histogram of Orientated Gra-
dients (HOG) [9], [10], [11], [12], and Gabor magnitude [11],
[12], [13] descriptors readily fit into this parametric form.
These features have been widely used due to their biological
relevance, their ability to encode edges and texture, and their
invariance to illumination. An inherent problem with this
method is the large memory and computational overheads
required for training and testing these filter banks. Other
than cases where their is extreme illumination variation,
which is unlikely for the vast majority of applications of this
technology at the moment (i.e. the environment should be

Linear SVM

(b)

(a)

x � RD

Rectification Pooling

x � RD

refer to (i) and (ii) as representation 2DS-NS and 2DS-
A respectively.

2DA: 2D appearance, A(u) representation (see Equation
(2)) of the appearance of the face given a static mean
shape.

3DS: 3D shape, s representation (see Equation (3)) where
the position in 3D of the face and its facial features has
been estimated. Normalization is applied through the
removal of the similarity transform in 3D (i.e. remove
3D translation, scale and rotation).

2DS

2DA

3DSWarp to
mean shape

Figure 2: AAM Derived features. The AAM tracked result is used
to compute the 2D shape, the shape-free appearance, and the 3D
shape.

5. Classifiers
In this paper, since we are dealing with peak-to-peak recog-
nition, we explored two commonly used classifiers for facial
action recognition [3, 6].

5.1. Nearest Neighbor (NN)
Nearest neighbor (NN) classifiers are typically employed in
scenarios where there are many classes, and there is a mini-
mal amount of training observations for each class (e.g. face
recognition); making them well suited for the task of facial
action recognition. A NN classifier seeks to find of N la-
beled train observations {oi}N

i=1 the single closest observa-
tion to the unlabeled test observation o∗; classifying o∗ as
having the nearest neighbor’s label.

When N is small the choice of distance metric D(a,b)
between observation points becomes especially impor-
tant [12]. One of the most common distance metrics em-
ployed in face recognition and facial action recognition is
the Mahalanobis distance,

D(a,b) = (a − b)T W(a − b) (5)

where a and b are observation vectors being compared
and W is a weighting matrix. It is often advantageous to

attempt to learn W from the train-set. Two common ap-
proaches to learn W are,

Principal Component Analysis (PCA): attempts to find
the K eigenvectors V = {vk}K

k=1, corresponding to
the K largest eigenvalues, of the train-set’s covari-
ance matrix. These K eigenvectors can be thought
of as the K largest modes of linear variation in the
train-set. The weighting matrix can then be defined
as W = VVT . Typically, K << N thereby con-
straining the matching of a and b to a subspace where
training observations have previously spanned.

Linear Discriminant Analysis (LDA): attempts to find
the K eigenvectors V = {vk}K

k=1 of SbS−1
w where Sb

and Sw are the within- and between- class scatter ma-
trices of the train-set. These K eigenvectors can be
thought of as the K largest modes of discrimination
in the train-set. Since SbS−1

w is not symmetrical, we
must employ simultaneous diagonalization [12] to find
the solution. PCA is typically applied before LDA, es-
pecially if the dimensionality of the raw face represen-
tations is large, so as to minimize sample-size noise.

If there is not enough training data and many classes
LDA overfits and can perform poorly, on the other hand
PCA could not be discriminative enough if two classes span
a similar subspace. For the purposes of this paper PCA used
in conjunction with LDA was found to be most suitable for
the task of facial action recognition; we shall refer to this
classifier as NN-LDA.

5.2. Support Vector Machine (SVM)
Support vector machines (SVMs) have been demonstrated
to be extremely useful in a number of pattern recognition
tasks including face and facial action recognition. This type
of classifier attempts to find the hyper-plane that maximizes
the margin between positive and negative observations for
a specified class. A linear SVM classification decision is
made for an unlabeled test observation o∗ by,

wT o∗
true
≷

false
b (6)

where w is the vector normal to the separating hyperplane
and b is the bias. Both w and b were estimated so that they
minimize the structural risk of a train-set. Typically, w is
not defined explicitly, but through a linear sum of support
vectors. As a result SVMs offer additional appeal as they
allow for the employment of non-linear combination func-
tions through the use of kernel functions such as the radial
basis function (RBF), polynomial, sigmoid kernels. A RBF
kernel was used in our experiments throughout this paper

!"#$%%&'()*+#,+-.%+/-.+0(-%"(1-'#(12+3#(,%"%($%+#(+45-#61-'$+71$%+1(&+8%*-5"%+9%$#)('-'#(+:789;<=>+

<?/=@A?BA<C?BD<=+EB<F<<+G+B<<=!!"""#

refer to (i) and (ii) as representation 2DS-NS and 2DS-
A respectively.

2DA: 2D appearance, A(u) representation (see Equation
(2)) of the appearance of the face given a static mean
shape.

3DS: 3D shape, s representation (see Equation (3)) where
the position in 3D of the face and its facial features has
been estimated. Normalization is applied through the
removal of the similarity transform in 3D (i.e. remove
3D translation, scale and rotation).

2DS

2DA

3DSWarp to
mean shape

Figure 2: AAM Derived features. The AAM tracked result is used
to compute the 2D shape, the shape-free appearance, and the 3D
shape.

5. Classifiers
In this paper, since we are dealing with peak-to-peak recog-
nition, we explored two commonly used classifiers for facial
action recognition [3, 6].

5.1. Nearest Neighbor (NN)
Nearest neighbor (NN) classifiers are typically employed in
scenarios where there are many classes, and there is a mini-
mal amount of training observations for each class (e.g. face
recognition); making them well suited for the task of facial
action recognition. A NN classifier seeks to find of N la-
beled train observations {oi}N

i=1 the single closest observa-
tion to the unlabeled test observation o∗; classifying o∗ as
having the nearest neighbor’s label.

When N is small the choice of distance metric D(a,b)
between observation points becomes especially impor-
tant [12]. One of the most common distance metrics em-
ployed in face recognition and facial action recognition is
the Mahalanobis distance,

D(a,b) = (a − b)T W(a − b) (5)

where a and b are observation vectors being compared
and W is a weighting matrix. It is often advantageous to

attempt to learn W from the train-set. Two common ap-
proaches to learn W are,

Principal Component Analysis (PCA): attempts to find
the K eigenvectors V = {vk}K

k=1, corresponding to
the K largest eigenvalues, of the train-set’s covari-
ance matrix. These K eigenvectors can be thought
of as the K largest modes of linear variation in the
train-set. The weighting matrix can then be defined
as W = VVT . Typically, K << N thereby con-
straining the matching of a and b to a subspace where
training observations have previously spanned.

Linear Discriminant Analysis (LDA): attempts to find
the K eigenvectors V = {vk}K

k=1 of SbS−1
w where Sb

and Sw are the within- and between- class scatter ma-
trices of the train-set. These K eigenvectors can be
thought of as the K largest modes of discrimination
in the train-set. Since SbS−1

w is not symmetrical, we
must employ simultaneous diagonalization [12] to find
the solution. PCA is typically applied before LDA, es-
pecially if the dimensionality of the raw face represen-
tations is large, so as to minimize sample-size noise.

If there is not enough training data and many classes
LDA overfits and can perform poorly, on the other hand
PCA could not be discriminative enough if two classes span
a similar subspace. For the purposes of this paper PCA used
in conjunction with LDA was found to be most suitable for
the task of facial action recognition; we shall refer to this
classifier as NN-LDA.

5.2. Support Vector Machine (SVM)
Support vector machines (SVMs) have been demonstrated
to be extremely useful in a number of pattern recognition
tasks including face and facial action recognition. This type
of classifier attempts to find the hyper-plane that maximizes
the margin between positive and negative observations for
a specified class. A linear SVM classification decision is
made for an unlabeled test observation o∗ by,

wT o∗
true
≷

false
b (6)

where w is the vector normal to the separating hyperplane
and b is the bias. Both w and b were estimated so that they
minimize the structural risk of a train-set. Typically, w is
not defined explicitly, but through a linear sum of support
vectors. As a result SVMs offer additional appeal as they
allow for the employment of non-linear combination func-
tions through the use of kernel functions such as the radial
basis function (RBF), polynomial, sigmoid kernels. A RBF
kernel was used in our experiments throughout this paper

!"#$%%&'()*+#,+-.%+/-.+0(-%"(1-'#(12+3#(,%"%($%+#(+45-#61-'$+71$%+1(&+8%*-5"%+9%$#)('-'#(+:789;<=>+

<?/=@A?BA<C?BD<=+EB<F<<+G+B<<=!!"""#

2

64
b ⇤ {(x ⇤ g1) � (x ⇤ g1)}

...
b ⇤ {(x ⇤ gF) � (x ⇤ gF)}

3

75

Pinto et al. 2008
Hubel & Wiesel 1962
Serre & Poggio 2007

Lowe 1999

Filter Bank

In the Pursuit of Effective Affective Computing:
Are Features Necessary?

Abstract— All facial expression recognition systems require
some geometric alignment of the face intensity image before
the classification process can occur. Ideally, one would attempt
to perform a “dense” alignment, where a large number (e.g.,
60-70) of fiducial points on the face image are accurately
detected with high accuracy. Up until recently, this type of
dense alignment, however, has been problematic due to poor
reliability and robustness. Instead, many expression detection
methods have relied on a two tier strategy of: (i) employing
a “coarse” alignment where only a few (e.g., 3-4) points on
the face are detected with relatively poor accuracy but high
reliability and robustness, and (ii) using a feature/descriptor
based representation of the coarsely registered image such as
Histogram of Orientated Gradients (HOG) or Gabor magni-
tudes. Recently, however, a number of new algorithms for face
alignment have demonstrated both dense alignment with high
reliability and accuracy (e.g. Constrained Local Models), which
begs the question: what do these features do that standard
pixel representations do not? In this paper we show that when
close to perfect alignment is obtained, there is no real benefit
in employing these different appearance-based representations
in consistent conditions. However, we show that when there is
misalignment these features do work well by encoding robustess
to alignment error. For this work, we compared two automatic
approaches to dense face alignment, subject-dependent (i.e.
active appearance models (AAMs)) vs subject-independent (i.e.
Constrained Local Model (CLM)) and conducted a battery of
experiments across various datasets (i.e. CK+, Pain, RUFACS
and GEMEP) to quantify these effects.

I. INTRODUCTION
Research into affective computing has been very active

over the past decade, mainly due to the vast number of appli-
cations in which it could be useful in (i.e. marketing, human-
computer-interaction, health-care, security, behavioral sci-
ence, car safety etc.). The main goal of this research is
to have a computer system being able to automatically
detect/infer the emotional state of any person based on
various modes (i.e. face, voice, body, actions) in real-time.

The majority of this work has centered on the task of facial
expression detection, mostly by way of individual action unit
(AU) detection. The popular approach to this has been to
first locate and track a person’s face and facial features,
derive a feature representation of the face and then classify
whether or not a frame contains the AU of interest or not
(see Figure 1). In terms of face alignment, this can be done
either coarsely through tracking a couple of key features (i.e.
Viola & Jones [1] type approach where the face and eyes are
tracked) or highly accurately via a deformable model type
approach where a dense mesh of 60-70 points on the face is
used. The latter is desired due to this accuracy in addition
to their ability to infer the 3D pose parameters (i.e. pitch,
yaw and roll) and features (i.e. synthesize frontal view),

PAMI DRAFT - 2009 4

u

v

(1,1)

...

x

y ...

x

y ...

(2,2)

...

...

...

(3,3)

...

...

...

(4,4)

Fig. 1. Visualization of Gabor filter banks in spatial and Fourier domains. The above figure shows individual Gabor filters stemming
from a 4x4 coverage of the spectrum, with each individual filter corresponding to a different orientation and scale. Row 1: Frequency
domain Gabor filters. Row 2: Spatial domain Even filters. Row 3: Spatial domain Odd filters.

referred to as Parseval’s relation which states that,

xT
i xj = x̂T

i x̂j⇥i, j (12)

given that we assume our complex 2D-DFT basis F is or-
thonormal. Based on this formulation learning a linear SVM
in the spatial or Fourier domain should be identical.

5 RE-INTERPRETING LINEAR FILTERS
Taking the results from Sections 3 and 4 it is possible to
re-interpret the learning of an SVM with concatenated filter
responses zi in the spatial domain as being equivalent to
learning the support weight vector � in the dual problem,

max
0⇥�i⇥C

l⇤

i=1

�i �
1
2

l⇤

i=1

l⇤

j=1

�i�jyiyjx̂T
i Sx̂j (13)

subject to
l⇤

i=1

yi�i = 0

where x̂i is the 2D-DFT of the vectorized training image xi

and S is the diagonal weighting matrix of filters estimated in
Equation 8. Equivalently, one can view the prime problem as,

min
ŵ

1
2
ŵTS�1ŵ + C

l⇤

i=1

[1� yiŵT x̂i]+ (14)

where we can now view the SVM as attempting to maximize
the weighted Euclidean distance margin, inversely proportional
to ŵTS�1ŵ, in a N dimensional Fourier space. This is in
contrast to the canonical viewpoint that attempts to maximize
the Euclidean distance margin for an SVM in a NM dimen-
sional spatial filter response space. A major disadvantage to
the latter viewpoint is that memory storage and computational
cost are directly linked to the number of filter banks M
being employed. In our new viewpoint the matrix S can be
pre-computed before learning, making the equivalent learning
process now independent of M . It is interesting to note that in

Equation 14 we are only manipulating the margin term, while
the form of the hinge error term remains the same.

5.1 Training with Complex Vectors
One problem, however, with our proposed computationally
efficient approach to learning a Gabor filtered linear SVM
is that learning has to occur in the Fourier rather than the
spatial domain. This means that an SVM has to be learnt
using complex (real and imaginary) vectors rather than just
real vectors obtained from the spatial image domain. At first
glance learning an SVM with complex Fourier vectors may
seem problematic and require SVM software specifically for
learning in the Fourier domain as: (i) in general the inner prod-
uct between two complex vectors is itself a complex number,
and (ii) most existing SVM packages (e.g., LibSVM [16]) can
handle only real vectors during training.
Fortunately, the first problem can be automatically circum-

vented through Parseval’s relation which guarantees that the
inner product in the Fourier domain is equivalent to the inner
product in the spatial domain. Since the spatial images are all
real, then the inner product in the Fourier domain must also
be real. The second problem can also be easily circumvented
through the realization that for any two Fourier complex
vectors x̂i and x̂j derived from spatial signals/images xi

and xj respectively the following equivalence holds,

x̂T
i x̂j =

�
Re{x̂i}
Im{x̂i}

⇥T �
Re{x̂j}
Im{x̂j}

⇥
(15)

a proof of this equivalence can be found in the Appendix.
Based on this equivalence one can replace any N dimensional
complex Fourier vector, equivalently, with a 2N dimensional
real vector where the real and imaginary components have
been concatenated into a single vector. Since the inner products
will be identical, according to the dual of the SVM objective
function, the estimated support weights should be identical.
This equivalence greatly simplifies the learning of the linear

3.3. TRAINING APPLICATIONS 43

Figure 3.2: AFERS at various states. Row-wise from top-left to bottom-right:
Initial display, neutral, joy, disgust, surprise, contempt.

(a) (b) (c)

(a) (b)

(d)

Monday, September 27, 2010

Fig. 1: Most facial expression systems (a) align the face and
facial features (i.e. either coarse registration (i.e. face and eyes)
or deformable models using dense mesh (i.e. subject-dependent
approach (AAM) or subject-independent approach (CLM). After
tracking, an image of the face is obtained and this image may
or may not be post-processed (b) (e.g. Gabor filter bank) to
gain a feature representation (c). These features are then used for
classifcation (d).

which is ideal in situations where there is a lot of head
movement, especially out-of-plane head rotations. Subject-
dependent active appearance models (AAMs) [2], [3] have
been widely used in this field [4], [5], [6], [7] for those
reasons but this approach requires manual labeling of key
frames of the target sequence (up to 5% of frames). For
applications where manually labeling frames is prohibitive
(e.g. marketing, security/law enforcement, health-care and
HCI), a more generic or subject-independent face alignment
approach is required. One such approach is the constrained
local model (CLM) method developed by Saragih et al. [8].
The CLM leverages the generalization capacity of local patch
experts and the constraint over joint deformation provided by
a point distribution model (PDM). It is similar to AAMs in
the fact that it tracks a dense mesh of points on the face that
produce both shape and appearance features, but through the
utilization of these patches it has been shown to work well
for the subject-independent case (i.e. unseen subjects).

Once the face has been tracked, the normal convention is
to apply a bank of filters, followed by a rectification step,
contrast normalization, and then a pooling/subsampling strat-
egy. For example, the popular Histogram of Orientated Gra-
dients (HOG) [9], [10], [11], [12], and Gabor magnitude [11],
[12], [13] descriptors readily fit into this parametric form.
These features have been widely used due to their biological
relevance, their ability to encode edges and texture, and their
invariance to illumination. An inherent problem with this
method is the large memory and computational overheads
required for training and testing these filter banks. Other
than cases where their is extreme illumination variation,
which is unlikely for the vast majority of applications of this
technology at the moment (i.e. the environment should be

RectificationFilter Bank

|| . ||

Pooling

local average

"coarse"
"alignment"
"warping"

"dense"
"alignment"
"warping"

In the Pursuit of Effective Affective Computing:
Are Features Necessary?

Abstract— All facial expression recognition systems require
some geometric alignment of the face intensity image before
the classification process can occur. Ideally, one would attempt
to perform a “dense” alignment, where a large number (e.g.,
60-70) of fiducial points on the face image are accurately
detected with high accuracy. Up until recently, this type of
dense alignment, however, has been problematic due to poor
reliability and robustness. Instead, many expression detection
methods have relied on a two tier strategy of: (i) employing
a “coarse” alignment where only a few (e.g., 3-4) points on
the face are detected with relatively poor accuracy but high
reliability and robustness, and (ii) using a feature/descriptor
based representation of the coarsely registered image such as
Histogram of Orientated Gradients (HOG) or Gabor magni-
tudes. Recently, however, a number of new algorithms for face
alignment have demonstrated both dense alignment with high
reliability and accuracy (e.g. Constrained Local Models), which
begs the question: what do these features do that standard
pixel representations do not? In this paper we show that when
close to perfect alignment is obtained, there is no real benefit
in employing these different appearance-based representations
in consistent conditions. However, we show that when there is
misalignment these features do work well by encoding robustess
to alignment error. For this work, we compared two automatic
approaches to dense face alignment, subject-dependent (i.e.
active appearance models (AAMs)) vs subject-independent (i.e.
Constrained Local Model (CLM)) and conducted a battery of
experiments across various datasets (i.e. CK+, Pain, RUFACS
and GEMEP) to quantify these effects.

I. INTRODUCTION
Research into affective computing has been very active

over the past decade, mainly due to the vast number of appli-
cations in which it could be useful in (i.e. marketing, human-
computer-interaction, health-care, security, behavioral sci-
ence, car safety etc.). The main goal of this research is
to have a computer system being able to automatically
detect/infer the emotional state of any person based on
various modes (i.e. face, voice, body, actions) in real-time.

The majority of this work has centered on the task of facial
expression detection, mostly by way of individual action unit
(AU) detection. The popular approach to this has been to
first locate and track a person’s face and facial features,
derive a feature representation of the face and then classify
whether or not a frame contains the AU of interest or not
(see Figure 1). In terms of face alignment, this can be done
either coarsely through tracking a couple of key features (i.e.
Viola & Jones [1] type approach where the face and eyes are
tracked) or highly accurately via a deformable model type
approach where a dense mesh of 60-70 points on the face is
used. The latter is desired due to this accuracy in addition
to their ability to infer the 3D pose parameters (i.e. pitch,
yaw and roll) and features (i.e. synthesize frontal view),

PAMI DRAFT - 2009 4

u

v

(1,1)

...

x

y ...

x

y ...

(2,2)

...

...

...

(3,3)

...

...

...

(4,4)

Fig. 1. Visualization of Gabor filter banks in spatial and Fourier domains. The above figure shows individual Gabor filters stemming
from a 4x4 coverage of the spectrum, with each individual filter corresponding to a different orientation and scale. Row 1: Frequency
domain Gabor filters. Row 2: Spatial domain Even filters. Row 3: Spatial domain Odd filters.

referred to as Parseval’s relation which states that,

xT
i xj = x̂T

i x̂j⇥i, j (12)

given that we assume our complex 2D-DFT basis F is or-
thonormal. Based on this formulation learning a linear SVM
in the spatial or Fourier domain should be identical.

5 RE-INTERPRETING LINEAR FILTERS
Taking the results from Sections 3 and 4 it is possible to
re-interpret the learning of an SVM with concatenated filter
responses zi in the spatial domain as being equivalent to
learning the support weight vector � in the dual problem,

max
0⇥�i⇥C

l⇤

i=1

�i �
1
2

l⇤

i=1

l⇤

j=1

�i�jyiyjx̂T
i Sx̂j (13)

subject to
l⇤

i=1

yi�i = 0

where x̂i is the 2D-DFT of the vectorized training image xi

and S is the diagonal weighting matrix of filters estimated in
Equation 8. Equivalently, one can view the prime problem as,

min
ŵ

1
2
ŵTS�1ŵ + C

l⇤

i=1

[1� yiŵT x̂i]+ (14)

where we can now view the SVM as attempting to maximize
the weighted Euclidean distance margin, inversely proportional
to ŵTS�1ŵ, in a N dimensional Fourier space. This is in
contrast to the canonical viewpoint that attempts to maximize
the Euclidean distance margin for an SVM in a NM dimen-
sional spatial filter response space. A major disadvantage to
the latter viewpoint is that memory storage and computational
cost are directly linked to the number of filter banks M
being employed. In our new viewpoint the matrix S can be
pre-computed before learning, making the equivalent learning
process now independent of M . It is interesting to note that in

Equation 14 we are only manipulating the margin term, while
the form of the hinge error term remains the same.

5.1 Training with Complex Vectors
One problem, however, with our proposed computationally
efficient approach to learning a Gabor filtered linear SVM
is that learning has to occur in the Fourier rather than the
spatial domain. This means that an SVM has to be learnt
using complex (real and imaginary) vectors rather than just
real vectors obtained from the spatial image domain. At first
glance learning an SVM with complex Fourier vectors may
seem problematic and require SVM software specifically for
learning in the Fourier domain as: (i) in general the inner prod-
uct between two complex vectors is itself a complex number,
and (ii) most existing SVM packages (e.g., LibSVM [16]) can
handle only real vectors during training.
Fortunately, the first problem can be automatically circum-

vented through Parseval’s relation which guarantees that the
inner product in the Fourier domain is equivalent to the inner
product in the spatial domain. Since the spatial images are all
real, then the inner product in the Fourier domain must also
be real. The second problem can also be easily circumvented
through the realization that for any two Fourier complex
vectors x̂i and x̂j derived from spatial signals/images xi

and xj respectively the following equivalence holds,

x̂T
i x̂j =

�
Re{x̂i}
Im{x̂i}

⇥T �
Re{x̂j}
Im{x̂j}

⇥
(15)

a proof of this equivalence can be found in the Appendix.
Based on this equivalence one can replace any N dimensional
complex Fourier vector, equivalently, with a 2N dimensional
real vector where the real and imaginary components have
been concatenated into a single vector. Since the inner products
will be identical, according to the dual of the SVM objective
function, the estimated support weights should be identical.
This equivalence greatly simplifies the learning of the linear

3.3. TRAINING APPLICATIONS 43

Figure 3.2: AFERS at various states. Row-wise from top-left to bottom-right:
Initial display, neutral, joy, disgust, surprise, contempt.

(a) (b) (c)

(a) (b)

(d)

Monday, September 27, 2010

Fig. 1: Most facial expression systems (a) align the face and
facial features (i.e. either coarse registration (i.e. face and eyes)
or deformable models using dense mesh (i.e. subject-dependent
approach (AAM) or subject-independent approach (CLM). After
tracking, an image of the face is obtained and this image may
or may not be post-processed (b) (e.g. Gabor filter bank) to
gain a feature representation (c). These features are then used for
classifcation (d).

which is ideal in situations where there is a lot of head
movement, especially out-of-plane head rotations. Subject-
dependent active appearance models (AAMs) [2], [3] have
been widely used in this field [4], [5], [6], [7] for those
reasons but this approach requires manual labeling of key
frames of the target sequence (up to 5% of frames). For
applications where manually labeling frames is prohibitive
(e.g. marketing, security/law enforcement, health-care and
HCI), a more generic or subject-independent face alignment
approach is required. One such approach is the constrained
local model (CLM) method developed by Saragih et al. [8].
The CLM leverages the generalization capacity of local patch
experts and the constraint over joint deformation provided by
a point distribution model (PDM). It is similar to AAMs in
the fact that it tracks a dense mesh of points on the face that
produce both shape and appearance features, but through the
utilization of these patches it has been shown to work well
for the subject-independent case (i.e. unseen subjects).

Once the face has been tracked, the normal convention is
to apply a bank of filters, followed by a rectification step,
contrast normalization, and then a pooling/subsampling strat-
egy. For example, the popular Histogram of Orientated Gra-
dients (HOG) [9], [10], [11], [12], and Gabor magnitude [11],
[12], [13] descriptors readily fit into this parametric form.
These features have been widely used due to their biological
relevance, their ability to encode edges and texture, and their
invariance to illumination. An inherent problem with this
method is the large memory and computational overheads
required for training and testing these filter banks. Other
than cases where their is extreme illumination variation,
which is unlikely for the vast majority of applications of this
technology at the moment (i.e. the environment should be

Linear SVM

(b)

(a)

x � RD

Rectification Pooling

x � RD

refer to (i) and (ii) as representation 2DS-NS and 2DS-
A respectively.

2DA: 2D appearance, A(u) representation (see Equation
(2)) of the appearance of the face given a static mean
shape.

3DS: 3D shape, s representation (see Equation (3)) where
the position in 3D of the face and its facial features has
been estimated. Normalization is applied through the
removal of the similarity transform in 3D (i.e. remove
3D translation, scale and rotation).

2DS

2DA

3DSWarp to
mean shape

Figure 2: AAM Derived features. The AAM tracked result is used
to compute the 2D shape, the shape-free appearance, and the 3D
shape.

5. Classifiers
In this paper, since we are dealing with peak-to-peak recog-
nition, we explored two commonly used classifiers for facial
action recognition [3, 6].

5.1. Nearest Neighbor (NN)
Nearest neighbor (NN) classifiers are typically employed in
scenarios where there are many classes, and there is a mini-
mal amount of training observations for each class (e.g. face
recognition); making them well suited for the task of facial
action recognition. A NN classifier seeks to find of N la-
beled train observations {oi}N

i=1 the single closest observa-
tion to the unlabeled test observation o∗; classifying o∗ as
having the nearest neighbor’s label.

When N is small the choice of distance metric D(a,b)
between observation points becomes especially impor-
tant [12]. One of the most common distance metrics em-
ployed in face recognition and facial action recognition is
the Mahalanobis distance,

D(a,b) = (a − b)T W(a − b) (5)

where a and b are observation vectors being compared
and W is a weighting matrix. It is often advantageous to

attempt to learn W from the train-set. Two common ap-
proaches to learn W are,

Principal Component Analysis (PCA): attempts to find
the K eigenvectors V = {vk}K

k=1, corresponding to
the K largest eigenvalues, of the train-set’s covari-
ance matrix. These K eigenvectors can be thought
of as the K largest modes of linear variation in the
train-set. The weighting matrix can then be defined
as W = VVT . Typically, K << N thereby con-
straining the matching of a and b to a subspace where
training observations have previously spanned.

Linear Discriminant Analysis (LDA): attempts to find
the K eigenvectors V = {vk}K

k=1 of SbS−1
w where Sb

and Sw are the within- and between- class scatter ma-
trices of the train-set. These K eigenvectors can be
thought of as the K largest modes of discrimination
in the train-set. Since SbS−1

w is not symmetrical, we
must employ simultaneous diagonalization [12] to find
the solution. PCA is typically applied before LDA, es-
pecially if the dimensionality of the raw face represen-
tations is large, so as to minimize sample-size noise.

If there is not enough training data and many classes
LDA overfits and can perform poorly, on the other hand
PCA could not be discriminative enough if two classes span
a similar subspace. For the purposes of this paper PCA used
in conjunction with LDA was found to be most suitable for
the task of facial action recognition; we shall refer to this
classifier as NN-LDA.

5.2. Support Vector Machine (SVM)
Support vector machines (SVMs) have been demonstrated
to be extremely useful in a number of pattern recognition
tasks including face and facial action recognition. This type
of classifier attempts to find the hyper-plane that maximizes
the margin between positive and negative observations for
a specified class. A linear SVM classification decision is
made for an unlabeled test observation o∗ by,

wT o∗
true
≷

false
b (6)

where w is the vector normal to the separating hyperplane
and b is the bias. Both w and b were estimated so that they
minimize the structural risk of a train-set. Typically, w is
not defined explicitly, but through a linear sum of support
vectors. As a result SVMs offer additional appeal as they
allow for the employment of non-linear combination func-
tions through the use of kernel functions such as the radial
basis function (RBF), polynomial, sigmoid kernels. A RBF
kernel was used in our experiments throughout this paper

!"#$%%&'()*+#,+-.%+/-.+0(-%"(1-'#(12+3#(,%"%($%+#(+45-#61-'$+71$%+1(&+8%*-5"%+9%$#)('-'#(+:789;<=>+

<?/=@A?BA<C?BD<=+EB<F<<+G+B<<=!!"""#

refer to (i) and (ii) as representation 2DS-NS and 2DS-
A respectively.

2DA: 2D appearance, A(u) representation (see Equation
(2)) of the appearance of the face given a static mean
shape.

3DS: 3D shape, s representation (see Equation (3)) where
the position in 3D of the face and its facial features has
been estimated. Normalization is applied through the
removal of the similarity transform in 3D (i.e. remove
3D translation, scale and rotation).

2DS

2DA

3DSWarp to
mean shape

Figure 2: AAM Derived features. The AAM tracked result is used
to compute the 2D shape, the shape-free appearance, and the 3D
shape.

5. Classifiers
In this paper, since we are dealing with peak-to-peak recog-
nition, we explored two commonly used classifiers for facial
action recognition [3, 6].

5.1. Nearest Neighbor (NN)
Nearest neighbor (NN) classifiers are typically employed in
scenarios where there are many classes, and there is a mini-
mal amount of training observations for each class (e.g. face
recognition); making them well suited for the task of facial
action recognition. A NN classifier seeks to find of N la-
beled train observations {oi}N

i=1 the single closest observa-
tion to the unlabeled test observation o∗; classifying o∗ as
having the nearest neighbor’s label.

When N is small the choice of distance metric D(a,b)
between observation points becomes especially impor-
tant [12]. One of the most common distance metrics em-
ployed in face recognition and facial action recognition is
the Mahalanobis distance,

D(a,b) = (a − b)T W(a − b) (5)

where a and b are observation vectors being compared
and W is a weighting matrix. It is often advantageous to

attempt to learn W from the train-set. Two common ap-
proaches to learn W are,

Principal Component Analysis (PCA): attempts to find
the K eigenvectors V = {vk}K

k=1, corresponding to
the K largest eigenvalues, of the train-set’s covari-
ance matrix. These K eigenvectors can be thought
of as the K largest modes of linear variation in the
train-set. The weighting matrix can then be defined
as W = VVT . Typically, K << N thereby con-
straining the matching of a and b to a subspace where
training observations have previously spanned.

Linear Discriminant Analysis (LDA): attempts to find
the K eigenvectors V = {vk}K

k=1 of SbS−1
w where Sb

and Sw are the within- and between- class scatter ma-
trices of the train-set. These K eigenvectors can be
thought of as the K largest modes of discrimination
in the train-set. Since SbS−1

w is not symmetrical, we
must employ simultaneous diagonalization [12] to find
the solution. PCA is typically applied before LDA, es-
pecially if the dimensionality of the raw face represen-
tations is large, so as to minimize sample-size noise.

If there is not enough training data and many classes
LDA overfits and can perform poorly, on the other hand
PCA could not be discriminative enough if two classes span
a similar subspace. For the purposes of this paper PCA used
in conjunction with LDA was found to be most suitable for
the task of facial action recognition; we shall refer to this
classifier as NN-LDA.

5.2. Support Vector Machine (SVM)
Support vector machines (SVMs) have been demonstrated
to be extremely useful in a number of pattern recognition
tasks including face and facial action recognition. This type
of classifier attempts to find the hyper-plane that maximizes
the margin between positive and negative observations for
a specified class. A linear SVM classification decision is
made for an unlabeled test observation o∗ by,

wT o∗
true
≷

false
b (6)

where w is the vector normal to the separating hyperplane
and b is the bias. Both w and b were estimated so that they
minimize the structural risk of a train-set. Typically, w is
not defined explicitly, but through a linear sum of support
vectors. As a result SVMs offer additional appeal as they
allow for the employment of non-linear combination func-
tions through the use of kernel functions such as the radial
basis function (RBF), polynomial, sigmoid kernels. A RBF
kernel was used in our experiments throughout this paper

!"#$%%&'()*+#,+-.%+/-.+0(-%"(1-'#(12+3#(,%"%($%+#(+45-#61-'$+71$%+1(&+8%*-5"%+9%$#)('-'#(+:789;<=>+

<?/=@A?BA<C?BD<=+EB<F<<+G+B<<=!!"""#

Contrast
Normalization

Pinto et al. 2008
Hubel & Wiesel 1962
Serre & Poggio 2007

Lowe 1999

Filter Bank

In the Pursuit of Effective Affective Computing:
Are Features Necessary?

Abstract— All facial expression recognition systems require
some geometric alignment of the face intensity image before
the classification process can occur. Ideally, one would attempt
to perform a “dense” alignment, where a large number (e.g.,
60-70) of fiducial points on the face image are accurately
detected with high accuracy. Up until recently, this type of
dense alignment, however, has been problematic due to poor
reliability and robustness. Instead, many expression detection
methods have relied on a two tier strategy of: (i) employing
a “coarse” alignment where only a few (e.g., 3-4) points on
the face are detected with relatively poor accuracy but high
reliability and robustness, and (ii) using a feature/descriptor
based representation of the coarsely registered image such as
Histogram of Orientated Gradients (HOG) or Gabor magni-
tudes. Recently, however, a number of new algorithms for face
alignment have demonstrated both dense alignment with high
reliability and accuracy (e.g. Constrained Local Models), which
begs the question: what do these features do that standard
pixel representations do not? In this paper we show that when
close to perfect alignment is obtained, there is no real benefit
in employing these different appearance-based representations
in consistent conditions. However, we show that when there is
misalignment these features do work well by encoding robustess
to alignment error. For this work, we compared two automatic
approaches to dense face alignment, subject-dependent (i.e.
active appearance models (AAMs)) vs subject-independent (i.e.
Constrained Local Model (CLM)) and conducted a battery of
experiments across various datasets (i.e. CK+, Pain, RUFACS
and GEMEP) to quantify these effects.

I. INTRODUCTION
Research into affective computing has been very active

over the past decade, mainly due to the vast number of appli-
cations in which it could be useful in (i.e. marketing, human-
computer-interaction, health-care, security, behavioral sci-
ence, car safety etc.). The main goal of this research is
to have a computer system being able to automatically
detect/infer the emotional state of any person based on
various modes (i.e. face, voice, body, actions) in real-time.

The majority of this work has centered on the task of facial
expression detection, mostly by way of individual action unit
(AU) detection. The popular approach to this has been to
first locate and track a person’s face and facial features,
derive a feature representation of the face and then classify
whether or not a frame contains the AU of interest or not
(see Figure 1). In terms of face alignment, this can be done
either coarsely through tracking a couple of key features (i.e.
Viola & Jones [1] type approach where the face and eyes are
tracked) or highly accurately via a deformable model type
approach where a dense mesh of 60-70 points on the face is
used. The latter is desired due to this accuracy in addition
to their ability to infer the 3D pose parameters (i.e. pitch,
yaw and roll) and features (i.e. synthesize frontal view),

PAMI DRAFT - 2009 4

u

v

(1,1)

...

x

y ...

x

y ...

(2,2)

...

...

...

(3,3)

...

...

...

(4,4)

Fig. 1. Visualization of Gabor filter banks in spatial and Fourier domains. The above figure shows individual Gabor filters stemming
from a 4x4 coverage of the spectrum, with each individual filter corresponding to a different orientation and scale. Row 1: Frequency
domain Gabor filters. Row 2: Spatial domain Even filters. Row 3: Spatial domain Odd filters.

referred to as Parseval’s relation which states that,

xT
i xj = x̂T

i x̂j⇥i, j (12)

given that we assume our complex 2D-DFT basis F is or-
thonormal. Based on this formulation learning a linear SVM
in the spatial or Fourier domain should be identical.

5 RE-INTERPRETING LINEAR FILTERS
Taking the results from Sections 3 and 4 it is possible to
re-interpret the learning of an SVM with concatenated filter
responses zi in the spatial domain as being equivalent to
learning the support weight vector � in the dual problem,

max
0⇥�i⇥C

l⇤

i=1

�i �
1
2

l⇤

i=1

l⇤

j=1

�i�jyiyjx̂T
i Sx̂j (13)

subject to
l⇤

i=1

yi�i = 0

where x̂i is the 2D-DFT of the vectorized training image xi

and S is the diagonal weighting matrix of filters estimated in
Equation 8. Equivalently, one can view the prime problem as,

min
ŵ

1
2
ŵTS�1ŵ + C

l⇤

i=1

[1� yiŵT x̂i]+ (14)

where we can now view the SVM as attempting to maximize
the weighted Euclidean distance margin, inversely proportional
to ŵTS�1ŵ, in a N dimensional Fourier space. This is in
contrast to the canonical viewpoint that attempts to maximize
the Euclidean distance margin for an SVM in a NM dimen-
sional spatial filter response space. A major disadvantage to
the latter viewpoint is that memory storage and computational
cost are directly linked to the number of filter banks M
being employed. In our new viewpoint the matrix S can be
pre-computed before learning, making the equivalent learning
process now independent of M . It is interesting to note that in

Equation 14 we are only manipulating the margin term, while
the form of the hinge error term remains the same.

5.1 Training with Complex Vectors
One problem, however, with our proposed computationally
efficient approach to learning a Gabor filtered linear SVM
is that learning has to occur in the Fourier rather than the
spatial domain. This means that an SVM has to be learnt
using complex (real and imaginary) vectors rather than just
real vectors obtained from the spatial image domain. At first
glance learning an SVM with complex Fourier vectors may
seem problematic and require SVM software specifically for
learning in the Fourier domain as: (i) in general the inner prod-
uct between two complex vectors is itself a complex number,
and (ii) most existing SVM packages (e.g., LibSVM [16]) can
handle only real vectors during training.
Fortunately, the first problem can be automatically circum-

vented through Parseval’s relation which guarantees that the
inner product in the Fourier domain is equivalent to the inner
product in the spatial domain. Since the spatial images are all
real, then the inner product in the Fourier domain must also
be real. The second problem can also be easily circumvented
through the realization that for any two Fourier complex
vectors x̂i and x̂j derived from spatial signals/images xi

and xj respectively the following equivalence holds,

x̂T
i x̂j =

�
Re{x̂i}
Im{x̂i}

⇥T �
Re{x̂j}
Im{x̂j}

⇥
(15)

a proof of this equivalence can be found in the Appendix.
Based on this equivalence one can replace any N dimensional
complex Fourier vector, equivalently, with a 2N dimensional
real vector where the real and imaginary components have
been concatenated into a single vector. Since the inner products
will be identical, according to the dual of the SVM objective
function, the estimated support weights should be identical.
This equivalence greatly simplifies the learning of the linear

3.3. TRAINING APPLICATIONS 43

Figure 3.2: AFERS at various states. Row-wise from top-left to bottom-right:
Initial display, neutral, joy, disgust, surprise, contempt.

(a) (b) (c)

(a) (b)

(d)

Monday, September 27, 2010

Fig. 1: Most facial expression systems (a) align the face and
facial features (i.e. either coarse registration (i.e. face and eyes)
or deformable models using dense mesh (i.e. subject-dependent
approach (AAM) or subject-independent approach (CLM). After
tracking, an image of the face is obtained and this image may
or may not be post-processed (b) (e.g. Gabor filter bank) to
gain a feature representation (c). These features are then used for
classifcation (d).

which is ideal in situations where there is a lot of head
movement, especially out-of-plane head rotations. Subject-
dependent active appearance models (AAMs) [2], [3] have
been widely used in this field [4], [5], [6], [7] for those
reasons but this approach requires manual labeling of key
frames of the target sequence (up to 5% of frames). For
applications where manually labeling frames is prohibitive
(e.g. marketing, security/law enforcement, health-care and
HCI), a more generic or subject-independent face alignment
approach is required. One such approach is the constrained
local model (CLM) method developed by Saragih et al. [8].
The CLM leverages the generalization capacity of local patch
experts and the constraint over joint deformation provided by
a point distribution model (PDM). It is similar to AAMs in
the fact that it tracks a dense mesh of points on the face that
produce both shape and appearance features, but through the
utilization of these patches it has been shown to work well
for the subject-independent case (i.e. unseen subjects).

Once the face has been tracked, the normal convention is
to apply a bank of filters, followed by a rectification step,
contrast normalization, and then a pooling/subsampling strat-
egy. For example, the popular Histogram of Orientated Gra-
dients (HOG) [9], [10], [11], [12], and Gabor magnitude [11],
[12], [13] descriptors readily fit into this parametric form.
These features have been widely used due to their biological
relevance, their ability to encode edges and texture, and their
invariance to illumination. An inherent problem with this
method is the large memory and computational overheads
required for training and testing these filter banks. Other
than cases where their is extreme illumination variation,
which is unlikely for the vast majority of applications of this
technology at the moment (i.e. the environment should be

RectificationFilter Bank

|| . ||

Pooling

local average

"coarse"
"alignment"
"warping"

"dense"
"alignment"
"warping"

In the Pursuit of Effective Affective Computing:
Are Features Necessary?

Abstract— All facial expression recognition systems require
some geometric alignment of the face intensity image before
the classification process can occur. Ideally, one would attempt
to perform a “dense” alignment, where a large number (e.g.,
60-70) of fiducial points on the face image are accurately
detected with high accuracy. Up until recently, this type of
dense alignment, however, has been problematic due to poor
reliability and robustness. Instead, many expression detection
methods have relied on a two tier strategy of: (i) employing
a “coarse” alignment where only a few (e.g., 3-4) points on
the face are detected with relatively poor accuracy but high
reliability and robustness, and (ii) using a feature/descriptor
based representation of the coarsely registered image such as
Histogram of Orientated Gradients (HOG) or Gabor magni-
tudes. Recently, however, a number of new algorithms for face
alignment have demonstrated both dense alignment with high
reliability and accuracy (e.g. Constrained Local Models), which
begs the question: what do these features do that standard
pixel representations do not? In this paper we show that when
close to perfect alignment is obtained, there is no real benefit
in employing these different appearance-based representations
in consistent conditions. However, we show that when there is
misalignment these features do work well by encoding robustess
to alignment error. For this work, we compared two automatic
approaches to dense face alignment, subject-dependent (i.e.
active appearance models (AAMs)) vs subject-independent (i.e.
Constrained Local Model (CLM)) and conducted a battery of
experiments across various datasets (i.e. CK+, Pain, RUFACS
and GEMEP) to quantify these effects.

I. INTRODUCTION
Research into affective computing has been very active

over the past decade, mainly due to the vast number of appli-
cations in which it could be useful in (i.e. marketing, human-
computer-interaction, health-care, security, behavioral sci-
ence, car safety etc.). The main goal of this research is
to have a computer system being able to automatically
detect/infer the emotional state of any person based on
various modes (i.e. face, voice, body, actions) in real-time.

The majority of this work has centered on the task of facial
expression detection, mostly by way of individual action unit
(AU) detection. The popular approach to this has been to
first locate and track a person’s face and facial features,
derive a feature representation of the face and then classify
whether or not a frame contains the AU of interest or not
(see Figure 1). In terms of face alignment, this can be done
either coarsely through tracking a couple of key features (i.e.
Viola & Jones [1] type approach where the face and eyes are
tracked) or highly accurately via a deformable model type
approach where a dense mesh of 60-70 points on the face is
used. The latter is desired due to this accuracy in addition
to their ability to infer the 3D pose parameters (i.e. pitch,
yaw and roll) and features (i.e. synthesize frontal view),

PAMI DRAFT - 2009 4

u

v

(1,1)

...

x

y ...

x

y ...

(2,2)

...

...

...

(3,3)

...

...

...

(4,4)

Fig. 1. Visualization of Gabor filter banks in spatial and Fourier domains. The above figure shows individual Gabor filters stemming
from a 4x4 coverage of the spectrum, with each individual filter corresponding to a different orientation and scale. Row 1: Frequency
domain Gabor filters. Row 2: Spatial domain Even filters. Row 3: Spatial domain Odd filters.

referred to as Parseval’s relation which states that,

xT
i xj = x̂T

i x̂j⇥i, j (12)

given that we assume our complex 2D-DFT basis F is or-
thonormal. Based on this formulation learning a linear SVM
in the spatial or Fourier domain should be identical.

5 RE-INTERPRETING LINEAR FILTERS
Taking the results from Sections 3 and 4 it is possible to
re-interpret the learning of an SVM with concatenated filter
responses zi in the spatial domain as being equivalent to
learning the support weight vector � in the dual problem,

max
0⇥�i⇥C

l⇤

i=1

�i �
1
2

l⇤

i=1

l⇤

j=1

�i�jyiyjx̂T
i Sx̂j (13)

subject to
l⇤

i=1

yi�i = 0

where x̂i is the 2D-DFT of the vectorized training image xi

and S is the diagonal weighting matrix of filters estimated in
Equation 8. Equivalently, one can view the prime problem as,

min
ŵ

1
2
ŵTS�1ŵ + C

l⇤

i=1

[1� yiŵT x̂i]+ (14)

where we can now view the SVM as attempting to maximize
the weighted Euclidean distance margin, inversely proportional
to ŵTS�1ŵ, in a N dimensional Fourier space. This is in
contrast to the canonical viewpoint that attempts to maximize
the Euclidean distance margin for an SVM in a NM dimen-
sional spatial filter response space. A major disadvantage to
the latter viewpoint is that memory storage and computational
cost are directly linked to the number of filter banks M
being employed. In our new viewpoint the matrix S can be
pre-computed before learning, making the equivalent learning
process now independent of M . It is interesting to note that in

Equation 14 we are only manipulating the margin term, while
the form of the hinge error term remains the same.

5.1 Training with Complex Vectors
One problem, however, with our proposed computationally
efficient approach to learning a Gabor filtered linear SVM
is that learning has to occur in the Fourier rather than the
spatial domain. This means that an SVM has to be learnt
using complex (real and imaginary) vectors rather than just
real vectors obtained from the spatial image domain. At first
glance learning an SVM with complex Fourier vectors may
seem problematic and require SVM software specifically for
learning in the Fourier domain as: (i) in general the inner prod-
uct between two complex vectors is itself a complex number,
and (ii) most existing SVM packages (e.g., LibSVM [16]) can
handle only real vectors during training.
Fortunately, the first problem can be automatically circum-

vented through Parseval’s relation which guarantees that the
inner product in the Fourier domain is equivalent to the inner
product in the spatial domain. Since the spatial images are all
real, then the inner product in the Fourier domain must also
be real. The second problem can also be easily circumvented
through the realization that for any two Fourier complex
vectors x̂i and x̂j derived from spatial signals/images xi

and xj respectively the following equivalence holds,

x̂T
i x̂j =

�
Re{x̂i}
Im{x̂i}

⇥T �
Re{x̂j}
Im{x̂j}

⇥
(15)

a proof of this equivalence can be found in the Appendix.
Based on this equivalence one can replace any N dimensional
complex Fourier vector, equivalently, with a 2N dimensional
real vector where the real and imaginary components have
been concatenated into a single vector. Since the inner products
will be identical, according to the dual of the SVM objective
function, the estimated support weights should be identical.
This equivalence greatly simplifies the learning of the linear

3.3. TRAINING APPLICATIONS 43

Figure 3.2: AFERS at various states. Row-wise from top-left to bottom-right:
Initial display, neutral, joy, disgust, surprise, contempt.

(a) (b) (c)

(a) (b)

(d)

Monday, September 27, 2010

Fig. 1: Most facial expression systems (a) align the face and
facial features (i.e. either coarse registration (i.e. face and eyes)
or deformable models using dense mesh (i.e. subject-dependent
approach (AAM) or subject-independent approach (CLM). After
tracking, an image of the face is obtained and this image may
or may not be post-processed (b) (e.g. Gabor filter bank) to
gain a feature representation (c). These features are then used for
classifcation (d).

which is ideal in situations where there is a lot of head
movement, especially out-of-plane head rotations. Subject-
dependent active appearance models (AAMs) [2], [3] have
been widely used in this field [4], [5], [6], [7] for those
reasons but this approach requires manual labeling of key
frames of the target sequence (up to 5% of frames). For
applications where manually labeling frames is prohibitive
(e.g. marketing, security/law enforcement, health-care and
HCI), a more generic or subject-independent face alignment
approach is required. One such approach is the constrained
local model (CLM) method developed by Saragih et al. [8].
The CLM leverages the generalization capacity of local patch
experts and the constraint over joint deformation provided by
a point distribution model (PDM). It is similar to AAMs in
the fact that it tracks a dense mesh of points on the face that
produce both shape and appearance features, but through the
utilization of these patches it has been shown to work well
for the subject-independent case (i.e. unseen subjects).

Once the face has been tracked, the normal convention is
to apply a bank of filters, followed by a rectification step,
contrast normalization, and then a pooling/subsampling strat-
egy. For example, the popular Histogram of Orientated Gra-
dients (HOG) [9], [10], [11], [12], and Gabor magnitude [11],
[12], [13] descriptors readily fit into this parametric form.
These features have been widely used due to their biological
relevance, their ability to encode edges and texture, and their
invariance to illumination. An inherent problem with this
method is the large memory and computational overheads
required for training and testing these filter banks. Other
than cases where their is extreme illumination variation,
which is unlikely for the vast majority of applications of this
technology at the moment (i.e. the environment should be

Linear SVM

(b)

(a)

x � RD

Rectification Pooling

x � RD

refer to (i) and (ii) as representation 2DS-NS and 2DS-
A respectively.

2DA: 2D appearance, A(u) representation (see Equation
(2)) of the appearance of the face given a static mean
shape.

3DS: 3D shape, s representation (see Equation (3)) where
the position in 3D of the face and its facial features has
been estimated. Normalization is applied through the
removal of the similarity transform in 3D (i.e. remove
3D translation, scale and rotation).

2DS

2DA

3DSWarp to
mean shape

Figure 2: AAM Derived features. The AAM tracked result is used
to compute the 2D shape, the shape-free appearance, and the 3D
shape.

5. Classifiers
In this paper, since we are dealing with peak-to-peak recog-
nition, we explored two commonly used classifiers for facial
action recognition [3, 6].

5.1. Nearest Neighbor (NN)
Nearest neighbor (NN) classifiers are typically employed in
scenarios where there are many classes, and there is a mini-
mal amount of training observations for each class (e.g. face
recognition); making them well suited for the task of facial
action recognition. A NN classifier seeks to find of N la-
beled train observations {oi}N

i=1 the single closest observa-
tion to the unlabeled test observation o∗; classifying o∗ as
having the nearest neighbor’s label.

When N is small the choice of distance metric D(a,b)
between observation points becomes especially impor-
tant [12]. One of the most common distance metrics em-
ployed in face recognition and facial action recognition is
the Mahalanobis distance,

D(a,b) = (a − b)T W(a − b) (5)

where a and b are observation vectors being compared
and W is a weighting matrix. It is often advantageous to

attempt to learn W from the train-set. Two common ap-
proaches to learn W are,

Principal Component Analysis (PCA): attempts to find
the K eigenvectors V = {vk}K

k=1, corresponding to
the K largest eigenvalues, of the train-set’s covari-
ance matrix. These K eigenvectors can be thought
of as the K largest modes of linear variation in the
train-set. The weighting matrix can then be defined
as W = VVT . Typically, K << N thereby con-
straining the matching of a and b to a subspace where
training observations have previously spanned.

Linear Discriminant Analysis (LDA): attempts to find
the K eigenvectors V = {vk}K

k=1 of SbS−1
w where Sb

and Sw are the within- and between- class scatter ma-
trices of the train-set. These K eigenvectors can be
thought of as the K largest modes of discrimination
in the train-set. Since SbS−1

w is not symmetrical, we
must employ simultaneous diagonalization [12] to find
the solution. PCA is typically applied before LDA, es-
pecially if the dimensionality of the raw face represen-
tations is large, so as to minimize sample-size noise.

If there is not enough training data and many classes
LDA overfits and can perform poorly, on the other hand
PCA could not be discriminative enough if two classes span
a similar subspace. For the purposes of this paper PCA used
in conjunction with LDA was found to be most suitable for
the task of facial action recognition; we shall refer to this
classifier as NN-LDA.

5.2. Support Vector Machine (SVM)
Support vector machines (SVMs) have been demonstrated
to be extremely useful in a number of pattern recognition
tasks including face and facial action recognition. This type
of classifier attempts to find the hyper-plane that maximizes
the margin between positive and negative observations for
a specified class. A linear SVM classification decision is
made for an unlabeled test observation o∗ by,

wT o∗
true
≷

false
b (6)

where w is the vector normal to the separating hyperplane
and b is the bias. Both w and b were estimated so that they
minimize the structural risk of a train-set. Typically, w is
not defined explicitly, but through a linear sum of support
vectors. As a result SVMs offer additional appeal as they
allow for the employment of non-linear combination func-
tions through the use of kernel functions such as the radial
basis function (RBF), polynomial, sigmoid kernels. A RBF
kernel was used in our experiments throughout this paper

!"#$%%&'()*+#,+-.%+/-.+0(-%"(1-'#(12+3#(,%"%($%+#(+45-#61-'$+71$%+1(&+8%*-5"%+9%$#)('-'#(+:789;<=>+

<?/=@A?BA<C?BD<=+EB<F<<+G+B<<=!!"""#

refer to (i) and (ii) as representation 2DS-NS and 2DS-
A respectively.

2DA: 2D appearance, A(u) representation (see Equation
(2)) of the appearance of the face given a static mean
shape.

3DS: 3D shape, s representation (see Equation (3)) where
the position in 3D of the face and its facial features has
been estimated. Normalization is applied through the
removal of the similarity transform in 3D (i.e. remove
3D translation, scale and rotation).

2DS

2DA

3DSWarp to
mean shape

Figure 2: AAM Derived features. The AAM tracked result is used
to compute the 2D shape, the shape-free appearance, and the 3D
shape.

5. Classifiers
In this paper, since we are dealing with peak-to-peak recog-
nition, we explored two commonly used classifiers for facial
action recognition [3, 6].

5.1. Nearest Neighbor (NN)
Nearest neighbor (NN) classifiers are typically employed in
scenarios where there are many classes, and there is a mini-
mal amount of training observations for each class (e.g. face
recognition); making them well suited for the task of facial
action recognition. A NN classifier seeks to find of N la-
beled train observations {oi}N

i=1 the single closest observa-
tion to the unlabeled test observation o∗; classifying o∗ as
having the nearest neighbor’s label.

When N is small the choice of distance metric D(a,b)
between observation points becomes especially impor-
tant [12]. One of the most common distance metrics em-
ployed in face recognition and facial action recognition is
the Mahalanobis distance,

D(a,b) = (a − b)T W(a − b) (5)

where a and b are observation vectors being compared
and W is a weighting matrix. It is often advantageous to

attempt to learn W from the train-set. Two common ap-
proaches to learn W are,

Principal Component Analysis (PCA): attempts to find
the K eigenvectors V = {vk}K

k=1, corresponding to
the K largest eigenvalues, of the train-set’s covari-
ance matrix. These K eigenvectors can be thought
of as the K largest modes of linear variation in the
train-set. The weighting matrix can then be defined
as W = VVT . Typically, K << N thereby con-
straining the matching of a and b to a subspace where
training observations have previously spanned.

Linear Discriminant Analysis (LDA): attempts to find
the K eigenvectors V = {vk}K

k=1 of SbS−1
w where Sb

and Sw are the within- and between- class scatter ma-
trices of the train-set. These K eigenvectors can be
thought of as the K largest modes of discrimination
in the train-set. Since SbS−1

w is not symmetrical, we
must employ simultaneous diagonalization [12] to find
the solution. PCA is typically applied before LDA, es-
pecially if the dimensionality of the raw face represen-
tations is large, so as to minimize sample-size noise.

If there is not enough training data and many classes
LDA overfits and can perform poorly, on the other hand
PCA could not be discriminative enough if two classes span
a similar subspace. For the purposes of this paper PCA used
in conjunction with LDA was found to be most suitable for
the task of facial action recognition; we shall refer to this
classifier as NN-LDA.

5.2. Support Vector Machine (SVM)
Support vector machines (SVMs) have been demonstrated
to be extremely useful in a number of pattern recognition
tasks including face and facial action recognition. This type
of classifier attempts to find the hyper-plane that maximizes
the margin between positive and negative observations for
a specified class. A linear SVM classification decision is
made for an unlabeled test observation o∗ by,

wT o∗
true
≷

false
b (6)

where w is the vector normal to the separating hyperplane
and b is the bias. Both w and b were estimated so that they
minimize the structural risk of a train-set. Typically, w is
not defined explicitly, but through a linear sum of support
vectors. As a result SVMs offer additional appeal as they
allow for the employment of non-linear combination func-
tions through the use of kernel functions such as the radial
basis function (RBF), polynomial, sigmoid kernels. A RBF
kernel was used in our experiments throughout this paper

!"#$%%&'()*+#,+-.%+/-.+0(-%"(1-'#(12+3#(,%"%($%+#(+45-#61-'$+71$%+1(&+8%*-5"%+9%$#)('-'#(+:789;<=>+

<?/=@A?BA<C?BD<=+EB<F<<+G+B<<=!!"""#

Contrast
Normalization

[]T. . .z =
�1(x)T �F (x)T

Pinto et al. 2008
Hubel & Wiesel 1962
Serre & Poggio 2007

Lowe 1999

Filter Bank

In the Pursuit of Effective Affective Computing:
Are Features Necessary?

Abstract— All facial expression recognition systems require
some geometric alignment of the face intensity image before
the classification process can occur. Ideally, one would attempt
to perform a “dense” alignment, where a large number (e.g.,
60-70) of fiducial points on the face image are accurately
detected with high accuracy. Up until recently, this type of
dense alignment, however, has been problematic due to poor
reliability and robustness. Instead, many expression detection
methods have relied on a two tier strategy of: (i) employing
a “coarse” alignment where only a few (e.g., 3-4) points on
the face are detected with relatively poor accuracy but high
reliability and robustness, and (ii) using a feature/descriptor
based representation of the coarsely registered image such as
Histogram of Orientated Gradients (HOG) or Gabor magni-
tudes. Recently, however, a number of new algorithms for face
alignment have demonstrated both dense alignment with high
reliability and accuracy (e.g. Constrained Local Models), which
begs the question: what do these features do that standard
pixel representations do not? In this paper we show that when
close to perfect alignment is obtained, there is no real benefit
in employing these different appearance-based representations
in consistent conditions. However, we show that when there is
misalignment these features do work well by encoding robustess
to alignment error. For this work, we compared two automatic
approaches to dense face alignment, subject-dependent (i.e.
active appearance models (AAMs)) vs subject-independent (i.e.
Constrained Local Model (CLM)) and conducted a battery of
experiments across various datasets (i.e. CK+, Pain, RUFACS
and GEMEP) to quantify these effects.

I. INTRODUCTION
Research into affective computing has been very active

over the past decade, mainly due to the vast number of appli-
cations in which it could be useful in (i.e. marketing, human-
computer-interaction, health-care, security, behavioral sci-
ence, car safety etc.). The main goal of this research is
to have a computer system being able to automatically
detect/infer the emotional state of any person based on
various modes (i.e. face, voice, body, actions) in real-time.

The majority of this work has centered on the task of facial
expression detection, mostly by way of individual action unit
(AU) detection. The popular approach to this has been to
first locate and track a person’s face and facial features,
derive a feature representation of the face and then classify
whether or not a frame contains the AU of interest or not
(see Figure 1). In terms of face alignment, this can be done
either coarsely through tracking a couple of key features (i.e.
Viola & Jones [1] type approach where the face and eyes are
tracked) or highly accurately via a deformable model type
approach where a dense mesh of 60-70 points on the face is
used. The latter is desired due to this accuracy in addition
to their ability to infer the 3D pose parameters (i.e. pitch,
yaw and roll) and features (i.e. synthesize frontal view),

PAMI DRAFT - 2009 4

u

v

(1,1)

...

x

y ...

x

y ...

(2,2)

...

...

...

(3,3)

...

...

...

(4,4)

Fig. 1. Visualization of Gabor filter banks in spatial and Fourier domains. The above figure shows individual Gabor filters stemming
from a 4x4 coverage of the spectrum, with each individual filter corresponding to a different orientation and scale. Row 1: Frequency
domain Gabor filters. Row 2: Spatial domain Even filters. Row 3: Spatial domain Odd filters.

referred to as Parseval’s relation which states that,

xT
i xj = x̂T

i x̂j⇥i, j (12)

given that we assume our complex 2D-DFT basis F is or-
thonormal. Based on this formulation learning a linear SVM
in the spatial or Fourier domain should be identical.

5 RE-INTERPRETING LINEAR FILTERS
Taking the results from Sections 3 and 4 it is possible to
re-interpret the learning of an SVM with concatenated filter
responses zi in the spatial domain as being equivalent to
learning the support weight vector � in the dual problem,

max
0⇥�i⇥C

l⇤

i=1

�i �
1
2

l⇤

i=1

l⇤

j=1

�i�jyiyjx̂T
i Sx̂j (13)

subject to
l⇤

i=1

yi�i = 0

where x̂i is the 2D-DFT of the vectorized training image xi

and S is the diagonal weighting matrix of filters estimated in
Equation 8. Equivalently, one can view the prime problem as,

min
ŵ

1
2
ŵTS�1ŵ + C

l⇤

i=1

[1� yiŵT x̂i]+ (14)

where we can now view the SVM as attempting to maximize
the weighted Euclidean distance margin, inversely proportional
to ŵTS�1ŵ, in a N dimensional Fourier space. This is in
contrast to the canonical viewpoint that attempts to maximize
the Euclidean distance margin for an SVM in a NM dimen-
sional spatial filter response space. A major disadvantage to
the latter viewpoint is that memory storage and computational
cost are directly linked to the number of filter banks M
being employed. In our new viewpoint the matrix S can be
pre-computed before learning, making the equivalent learning
process now independent of M . It is interesting to note that in

Equation 14 we are only manipulating the margin term, while
the form of the hinge error term remains the same.

5.1 Training with Complex Vectors
One problem, however, with our proposed computationally
efficient approach to learning a Gabor filtered linear SVM
is that learning has to occur in the Fourier rather than the
spatial domain. This means that an SVM has to be learnt
using complex (real and imaginary) vectors rather than just
real vectors obtained from the spatial image domain. At first
glance learning an SVM with complex Fourier vectors may
seem problematic and require SVM software specifically for
learning in the Fourier domain as: (i) in general the inner prod-
uct between two complex vectors is itself a complex number,
and (ii) most existing SVM packages (e.g., LibSVM [16]) can
handle only real vectors during training.
Fortunately, the first problem can be automatically circum-

vented through Parseval’s relation which guarantees that the
inner product in the Fourier domain is equivalent to the inner
product in the spatial domain. Since the spatial images are all
real, then the inner product in the Fourier domain must also
be real. The second problem can also be easily circumvented
through the realization that for any two Fourier complex
vectors x̂i and x̂j derived from spatial signals/images xi

and xj respectively the following equivalence holds,

x̂T
i x̂j =

�
Re{x̂i}
Im{x̂i}

⇥T �
Re{x̂j}
Im{x̂j}

⇥
(15)

a proof of this equivalence can be found in the Appendix.
Based on this equivalence one can replace any N dimensional
complex Fourier vector, equivalently, with a 2N dimensional
real vector where the real and imaginary components have
been concatenated into a single vector. Since the inner products
will be identical, according to the dual of the SVM objective
function, the estimated support weights should be identical.
This equivalence greatly simplifies the learning of the linear

3.3. TRAINING APPLICATIONS 43

Figure 3.2: AFERS at various states. Row-wise from top-left to bottom-right:
Initial display, neutral, joy, disgust, surprise, contempt.

(a) (b) (c)

(a) (b)

(d)

Monday, September 27, 2010

Fig. 1: Most facial expression systems (a) align the face and
facial features (i.e. either coarse registration (i.e. face and eyes)
or deformable models using dense mesh (i.e. subject-dependent
approach (AAM) or subject-independent approach (CLM). After
tracking, an image of the face is obtained and this image may
or may not be post-processed (b) (e.g. Gabor filter bank) to
gain a feature representation (c). These features are then used for
classifcation (d).

which is ideal in situations where there is a lot of head
movement, especially out-of-plane head rotations. Subject-
dependent active appearance models (AAMs) [2], [3] have
been widely used in this field [4], [5], [6], [7] for those
reasons but this approach requires manual labeling of key
frames of the target sequence (up to 5% of frames). For
applications where manually labeling frames is prohibitive
(e.g. marketing, security/law enforcement, health-care and
HCI), a more generic or subject-independent face alignment
approach is required. One such approach is the constrained
local model (CLM) method developed by Saragih et al. [8].
The CLM leverages the generalization capacity of local patch
experts and the constraint over joint deformation provided by
a point distribution model (PDM). It is similar to AAMs in
the fact that it tracks a dense mesh of points on the face that
produce both shape and appearance features, but through the
utilization of these patches it has been shown to work well
for the subject-independent case (i.e. unseen subjects).

Once the face has been tracked, the normal convention is
to apply a bank of filters, followed by a rectification step,
contrast normalization, and then a pooling/subsampling strat-
egy. For example, the popular Histogram of Orientated Gra-
dients (HOG) [9], [10], [11], [12], and Gabor magnitude [11],
[12], [13] descriptors readily fit into this parametric form.
These features have been widely used due to their biological
relevance, their ability to encode edges and texture, and their
invariance to illumination. An inherent problem with this
method is the large memory and computational overheads
required for training and testing these filter banks. Other
than cases where their is extreme illumination variation,
which is unlikely for the vast majority of applications of this
technology at the moment (i.e. the environment should be

RectificationFilter Bank

|| . ||

Pooling

local average

"coarse"
"alignment"
"warping"

"dense"
"alignment"
"warping"

In the Pursuit of Effective Affective Computing:
Are Features Necessary?

Abstract— All facial expression recognition systems require
some geometric alignment of the face intensity image before
the classification process can occur. Ideally, one would attempt
to perform a “dense” alignment, where a large number (e.g.,
60-70) of fiducial points on the face image are accurately
detected with high accuracy. Up until recently, this type of
dense alignment, however, has been problematic due to poor
reliability and robustness. Instead, many expression detection
methods have relied on a two tier strategy of: (i) employing
a “coarse” alignment where only a few (e.g., 3-4) points on
the face are detected with relatively poor accuracy but high
reliability and robustness, and (ii) using a feature/descriptor
based representation of the coarsely registered image such as
Histogram of Orientated Gradients (HOG) or Gabor magni-
tudes. Recently, however, a number of new algorithms for face
alignment have demonstrated both dense alignment with high
reliability and accuracy (e.g. Constrained Local Models), which
begs the question: what do these features do that standard
pixel representations do not? In this paper we show that when
close to perfect alignment is obtained, there is no real benefit
in employing these different appearance-based representations
in consistent conditions. However, we show that when there is
misalignment these features do work well by encoding robustess
to alignment error. For this work, we compared two automatic
approaches to dense face alignment, subject-dependent (i.e.
active appearance models (AAMs)) vs subject-independent (i.e.
Constrained Local Model (CLM)) and conducted a battery of
experiments across various datasets (i.e. CK+, Pain, RUFACS
and GEMEP) to quantify these effects.

I. INTRODUCTION
Research into affective computing has been very active

over the past decade, mainly due to the vast number of appli-
cations in which it could be useful in (i.e. marketing, human-
computer-interaction, health-care, security, behavioral sci-
ence, car safety etc.). The main goal of this research is
to have a computer system being able to automatically
detect/infer the emotional state of any person based on
various modes (i.e. face, voice, body, actions) in real-time.

The majority of this work has centered on the task of facial
expression detection, mostly by way of individual action unit
(AU) detection. The popular approach to this has been to
first locate and track a person’s face and facial features,
derive a feature representation of the face and then classify
whether or not a frame contains the AU of interest or not
(see Figure 1). In terms of face alignment, this can be done
either coarsely through tracking a couple of key features (i.e.
Viola & Jones [1] type approach where the face and eyes are
tracked) or highly accurately via a deformable model type
approach where a dense mesh of 60-70 points on the face is
used. The latter is desired due to this accuracy in addition
to their ability to infer the 3D pose parameters (i.e. pitch,
yaw and roll) and features (i.e. synthesize frontal view),

PAMI DRAFT - 2009 4

u

v

(1,1)

...

x

y ...

x

y ...

(2,2)

...

...

...

(3,3)

...

...

...

(4,4)

Fig. 1. Visualization of Gabor filter banks in spatial and Fourier domains. The above figure shows individual Gabor filters stemming
from a 4x4 coverage of the spectrum, with each individual filter corresponding to a different orientation and scale. Row 1: Frequency
domain Gabor filters. Row 2: Spatial domain Even filters. Row 3: Spatial domain Odd filters.

referred to as Parseval’s relation which states that,

xT
i xj = x̂T

i x̂j⇥i, j (12)

given that we assume our complex 2D-DFT basis F is or-
thonormal. Based on this formulation learning a linear SVM
in the spatial or Fourier domain should be identical.

5 RE-INTERPRETING LINEAR FILTERS
Taking the results from Sections 3 and 4 it is possible to
re-interpret the learning of an SVM with concatenated filter
responses zi in the spatial domain as being equivalent to
learning the support weight vector � in the dual problem,

max
0⇥�i⇥C

l⇤

i=1

�i �
1
2

l⇤

i=1

l⇤

j=1

�i�jyiyjx̂T
i Sx̂j (13)

subject to
l⇤

i=1

yi�i = 0

where x̂i is the 2D-DFT of the vectorized training image xi

and S is the diagonal weighting matrix of filters estimated in
Equation 8. Equivalently, one can view the prime problem as,

min
ŵ

1
2
ŵTS�1ŵ + C

l⇤

i=1

[1� yiŵT x̂i]+ (14)

where we can now view the SVM as attempting to maximize
the weighted Euclidean distance margin, inversely proportional
to ŵTS�1ŵ, in a N dimensional Fourier space. This is in
contrast to the canonical viewpoint that attempts to maximize
the Euclidean distance margin for an SVM in a NM dimen-
sional spatial filter response space. A major disadvantage to
the latter viewpoint is that memory storage and computational
cost are directly linked to the number of filter banks M
being employed. In our new viewpoint the matrix S can be
pre-computed before learning, making the equivalent learning
process now independent of M . It is interesting to note that in

Equation 14 we are only manipulating the margin term, while
the form of the hinge error term remains the same.

5.1 Training with Complex Vectors
One problem, however, with our proposed computationally
efficient approach to learning a Gabor filtered linear SVM
is that learning has to occur in the Fourier rather than the
spatial domain. This means that an SVM has to be learnt
using complex (real and imaginary) vectors rather than just
real vectors obtained from the spatial image domain. At first
glance learning an SVM with complex Fourier vectors may
seem problematic and require SVM software specifically for
learning in the Fourier domain as: (i) in general the inner prod-
uct between two complex vectors is itself a complex number,
and (ii) most existing SVM packages (e.g., LibSVM [16]) can
handle only real vectors during training.
Fortunately, the first problem can be automatically circum-

vented through Parseval’s relation which guarantees that the
inner product in the Fourier domain is equivalent to the inner
product in the spatial domain. Since the spatial images are all
real, then the inner product in the Fourier domain must also
be real. The second problem can also be easily circumvented
through the realization that for any two Fourier complex
vectors x̂i and x̂j derived from spatial signals/images xi

and xj respectively the following equivalence holds,

x̂T
i x̂j =

�
Re{x̂i}
Im{x̂i}

⇥T �
Re{x̂j}
Im{x̂j}

⇥
(15)

a proof of this equivalence can be found in the Appendix.
Based on this equivalence one can replace any N dimensional
complex Fourier vector, equivalently, with a 2N dimensional
real vector where the real and imaginary components have
been concatenated into a single vector. Since the inner products
will be identical, according to the dual of the SVM objective
function, the estimated support weights should be identical.
This equivalence greatly simplifies the learning of the linear

3.3. TRAINING APPLICATIONS 43

Figure 3.2: AFERS at various states. Row-wise from top-left to bottom-right:
Initial display, neutral, joy, disgust, surprise, contempt.

(a) (b) (c)

(a) (b)

(d)

Monday, September 27, 2010

Fig. 1: Most facial expression systems (a) align the face and
facial features (i.e. either coarse registration (i.e. face and eyes)
or deformable models using dense mesh (i.e. subject-dependent
approach (AAM) or subject-independent approach (CLM). After
tracking, an image of the face is obtained and this image may
or may not be post-processed (b) (e.g. Gabor filter bank) to
gain a feature representation (c). These features are then used for
classifcation (d).

which is ideal in situations where there is a lot of head
movement, especially out-of-plane head rotations. Subject-
dependent active appearance models (AAMs) [2], [3] have
been widely used in this field [4], [5], [6], [7] for those
reasons but this approach requires manual labeling of key
frames of the target sequence (up to 5% of frames). For
applications where manually labeling frames is prohibitive
(e.g. marketing, security/law enforcement, health-care and
HCI), a more generic or subject-independent face alignment
approach is required. One such approach is the constrained
local model (CLM) method developed by Saragih et al. [8].
The CLM leverages the generalization capacity of local patch
experts and the constraint over joint deformation provided by
a point distribution model (PDM). It is similar to AAMs in
the fact that it tracks a dense mesh of points on the face that
produce both shape and appearance features, but through the
utilization of these patches it has been shown to work well
for the subject-independent case (i.e. unseen subjects).

Once the face has been tracked, the normal convention is
to apply a bank of filters, followed by a rectification step,
contrast normalization, and then a pooling/subsampling strat-
egy. For example, the popular Histogram of Orientated Gra-
dients (HOG) [9], [10], [11], [12], and Gabor magnitude [11],
[12], [13] descriptors readily fit into this parametric form.
These features have been widely used due to their biological
relevance, their ability to encode edges and texture, and their
invariance to illumination. An inherent problem with this
method is the large memory and computational overheads
required for training and testing these filter banks. Other
than cases where their is extreme illumination variation,
which is unlikely for the vast majority of applications of this
technology at the moment (i.e. the environment should be

Linear SVM

(b)

(a)

x � RD

Rectification Pooling

x � RD

refer to (i) and (ii) as representation 2DS-NS and 2DS-
A respectively.

2DA: 2D appearance, A(u) representation (see Equation
(2)) of the appearance of the face given a static mean
shape.

3DS: 3D shape, s representation (see Equation (3)) where
the position in 3D of the face and its facial features has
been estimated. Normalization is applied through the
removal of the similarity transform in 3D (i.e. remove
3D translation, scale and rotation).

2DS

2DA

3DSWarp to
mean shape

Figure 2: AAM Derived features. The AAM tracked result is used
to compute the 2D shape, the shape-free appearance, and the 3D
shape.

5. Classifiers
In this paper, since we are dealing with peak-to-peak recog-
nition, we explored two commonly used classifiers for facial
action recognition [3, 6].

5.1. Nearest Neighbor (NN)
Nearest neighbor (NN) classifiers are typically employed in
scenarios where there are many classes, and there is a mini-
mal amount of training observations for each class (e.g. face
recognition); making them well suited for the task of facial
action recognition. A NN classifier seeks to find of N la-
beled train observations {oi}N

i=1 the single closest observa-
tion to the unlabeled test observation o∗; classifying o∗ as
having the nearest neighbor’s label.

When N is small the choice of distance metric D(a,b)
between observation points becomes especially impor-
tant [12]. One of the most common distance metrics em-
ployed in face recognition and facial action recognition is
the Mahalanobis distance,

D(a,b) = (a − b)T W(a − b) (5)

where a and b are observation vectors being compared
and W is a weighting matrix. It is often advantageous to

attempt to learn W from the train-set. Two common ap-
proaches to learn W are,

Principal Component Analysis (PCA): attempts to find
the K eigenvectors V = {vk}K

k=1, corresponding to
the K largest eigenvalues, of the train-set’s covari-
ance matrix. These K eigenvectors can be thought
of as the K largest modes of linear variation in the
train-set. The weighting matrix can then be defined
as W = VVT . Typically, K << N thereby con-
straining the matching of a and b to a subspace where
training observations have previously spanned.

Linear Discriminant Analysis (LDA): attempts to find
the K eigenvectors V = {vk}K

k=1 of SbS−1
w where Sb

and Sw are the within- and between- class scatter ma-
trices of the train-set. These K eigenvectors can be
thought of as the K largest modes of discrimination
in the train-set. Since SbS−1

w is not symmetrical, we
must employ simultaneous diagonalization [12] to find
the solution. PCA is typically applied before LDA, es-
pecially if the dimensionality of the raw face represen-
tations is large, so as to minimize sample-size noise.

If there is not enough training data and many classes
LDA overfits and can perform poorly, on the other hand
PCA could not be discriminative enough if two classes span
a similar subspace. For the purposes of this paper PCA used
in conjunction with LDA was found to be most suitable for
the task of facial action recognition; we shall refer to this
classifier as NN-LDA.

5.2. Support Vector Machine (SVM)
Support vector machines (SVMs) have been demonstrated
to be extremely useful in a number of pattern recognition
tasks including face and facial action recognition. This type
of classifier attempts to find the hyper-plane that maximizes
the margin between positive and negative observations for
a specified class. A linear SVM classification decision is
made for an unlabeled test observation o∗ by,

wT o∗
true
≷

false
b (6)

where w is the vector normal to the separating hyperplane
and b is the bias. Both w and b were estimated so that they
minimize the structural risk of a train-set. Typically, w is
not defined explicitly, but through a linear sum of support
vectors. As a result SVMs offer additional appeal as they
allow for the employment of non-linear combination func-
tions through the use of kernel functions such as the radial
basis function (RBF), polynomial, sigmoid kernels. A RBF
kernel was used in our experiments throughout this paper

!"#$%%&'()*+#,+-.%+/-.+0(-%"(1-'#(12+3#(,%"%($%+#(+45-#61-'$+71$%+1(&+8%*-5"%+9%$#)('-'#(+:789;<=>+

<?/=@A?BA<C?BD<=+EB<F<<+G+B<<=!!"""#

refer to (i) and (ii) as representation 2DS-NS and 2DS-
A respectively.

2DA: 2D appearance, A(u) representation (see Equation
(2)) of the appearance of the face given a static mean
shape.

3DS: 3D shape, s representation (see Equation (3)) where
the position in 3D of the face and its facial features has
been estimated. Normalization is applied through the
removal of the similarity transform in 3D (i.e. remove
3D translation, scale and rotation).

2DS

2DA

3DSWarp to
mean shape

Figure 2: AAM Derived features. The AAM tracked result is used
to compute the 2D shape, the shape-free appearance, and the 3D
shape.

5. Classifiers
In this paper, since we are dealing with peak-to-peak recog-
nition, we explored two commonly used classifiers for facial
action recognition [3, 6].

5.1. Nearest Neighbor (NN)
Nearest neighbor (NN) classifiers are typically employed in
scenarios where there are many classes, and there is a mini-
mal amount of training observations for each class (e.g. face
recognition); making them well suited for the task of facial
action recognition. A NN classifier seeks to find of N la-
beled train observations {oi}N

i=1 the single closest observa-
tion to the unlabeled test observation o∗; classifying o∗ as
having the nearest neighbor’s label.

When N is small the choice of distance metric D(a,b)
between observation points becomes especially impor-
tant [12]. One of the most common distance metrics em-
ployed in face recognition and facial action recognition is
the Mahalanobis distance,

D(a,b) = (a − b)T W(a − b) (5)

where a and b are observation vectors being compared
and W is a weighting matrix. It is often advantageous to

attempt to learn W from the train-set. Two common ap-
proaches to learn W are,

Principal Component Analysis (PCA): attempts to find
the K eigenvectors V = {vk}K

k=1, corresponding to
the K largest eigenvalues, of the train-set’s covari-
ance matrix. These K eigenvectors can be thought
of as the K largest modes of linear variation in the
train-set. The weighting matrix can then be defined
as W = VVT . Typically, K << N thereby con-
straining the matching of a and b to a subspace where
training observations have previously spanned.

Linear Discriminant Analysis (LDA): attempts to find
the K eigenvectors V = {vk}K

k=1 of SbS−1
w where Sb

and Sw are the within- and between- class scatter ma-
trices of the train-set. These K eigenvectors can be
thought of as the K largest modes of discrimination
in the train-set. Since SbS−1

w is not symmetrical, we
must employ simultaneous diagonalization [12] to find
the solution. PCA is typically applied before LDA, es-
pecially if the dimensionality of the raw face represen-
tations is large, so as to minimize sample-size noise.

If there is not enough training data and many classes
LDA overfits and can perform poorly, on the other hand
PCA could not be discriminative enough if two classes span
a similar subspace. For the purposes of this paper PCA used
in conjunction with LDA was found to be most suitable for
the task of facial action recognition; we shall refer to this
classifier as NN-LDA.

5.2. Support Vector Machine (SVM)
Support vector machines (SVMs) have been demonstrated
to be extremely useful in a number of pattern recognition
tasks including face and facial action recognition. This type
of classifier attempts to find the hyper-plane that maximizes
the margin between positive and negative observations for
a specified class. A linear SVM classification decision is
made for an unlabeled test observation o∗ by,

wT o∗
true
≷

false
b (6)

where w is the vector normal to the separating hyperplane
and b is the bias. Both w and b were estimated so that they
minimize the structural risk of a train-set. Typically, w is
not defined explicitly, but through a linear sum of support
vectors. As a result SVMs offer additional appeal as they
allow for the employment of non-linear combination func-
tions through the use of kernel functions such as the radial
basis function (RBF), polynomial, sigmoid kernels. A RBF
kernel was used in our experiments throughout this paper

!"#$%%&'()*+#,+-.%+/-.+0(-%"(1-'#(12+3#(,%"%($%+#(+45-#61-'$+71$%+1(&+8%*-5"%+9%$#)('-'#(+:789;<=>+

<?/=@A?BA<C?BD<=+EB<F<<+G+B<<=!!"""#

Contrast
Normalization

Feature Extraction
z 2 RDF

Pinto et al. 2008
Hubel & Wiesel 1962
Serre & Poggio 2007

Lowe 1999

Convolutional Neural Network
268 5. NEURAL NETWORKS

Input image Convolutional layer
Sub-sampling
layer

Figure 5.17 Diagram illustrating part of a convolutional neural network, showing a layer of convolu-
tional units followed by a layer of subsampling units. Several successive pairs of such
layers may be used.

and ultimately to yield information about the image as whole. Also, local features
that are useful in one region of the image are likely to be useful in other regions of
the image, for instance if the object of interest is translated.

These notions are incorporated into convolutional neural networks through three
mechanisms: (i) local receptive fields, (ii) weight sharing, and (iii) subsampling. The
structure of a convolutional network is illustrated in Figure 5.17. In the convolutional
layer the units are organized into planes, each of which is called a feature map. Units
in a feature map each take inputs only from a small subregion of the image, and all
of the units in a feature map are constrained to share the same weight values. For
instance, a feature map might consist of 100 units arranged in a 10 × 10 grid, with
each unit taking inputs from a 5×5 pixel patch of the image. The whole feature map
therefore has 25 adjustable weight parameters plus one adjustable bias parameter.
Input values from a patch are linearly combined using the weights and the bias, and
the result transformed by a sigmoidal nonlinearity using (5.1). If we think of the units
as feature detectors, then all of the units in a feature map detect the same pattern but
at different locations in the input image. Due to the weight sharing, the evaluation
of the activations of these units is equivalent to a convolution of the image pixel
intensities with a ‘kernel’ comprising the weight parameters. If the input image is
shifted, the activations of the feature map will be shifted by the same amount but will
otherwise be unchanged. This provides the basis for the (approximate) invariance of

LeCun 1980

Reminder: Convolution

8
4
6
2
7

⇤ 1
2

x

h

“signal”

“filter”

“convolution
operator”

Reminder: Convolution

8
4
6
2
7

⇤ 1
2

x

h

“signal”

“filter”

“convolution
operator”

>> conv(x,h,’valid’)
ans =

 20
 14
 14
 11

Reminder: Convolution

8
4
6
2
7

20
14
14
11

2 1 0 0 0
0 2 1 0 0
0 0 2 1 0
0 0 0 2 1

“signal”“convolutional matrix”
H

x

Hx

Reminder: Convolution

1
2

20
14
14
11

4 8
6 4
2 6
7 2 “filter”

“convolutional signal”
X

h

Xh

Multiple Filters

2

64
x ⇤ h1

...
x ⇤ hM

3

75

(D ·M ⇥ 1)

Multiple Filters

2

64
x ⇤ h1

...
x ⇤ hM

3

75

2

64
H1
...

HM

3

75x

(D ·M ⇥ 1)(D ·M ⇥D)

(D ⇥ 1)

Multiple Filters

2

64
x ⇤ h1

...
x ⇤ hM

3

75

2

64
H1
...

HM

3

75x

(D ·M ⇥ 1)(D ·M ⇥D)

“convolution
matrix”

(D ⇥ 1)

2

66666666664

0
0
0
0
0
0
0
0

3

77777777775

T

Convolutional Neural Network

W(1)

x

z

�
< 0

x 2 C1

x 2 C2

(1⇥D ·M)
(D ·M ⇥D)

[w(2)]T

2

66666666664

0
0
0
0
0
0
0
0

3

77777777775

T

Convolutional Neural Network

W(1)

x

z

�
< 0

x 2 C1

x 2 C2

(1⇥D ·M)
(D ·M ⇥D)

W

(1)
x =

2

664

W

(1)
1
...

W

(1)
M

3

775x =

2

664

x ⇤w(1)
1

...

x ⇤w(1)
M

3

775

[w(2)]T

2

66666666664

0
0
0
0
0
0
0
0

3

77777777775

T

Convolutional Neural Network

W(1)

x

z

�
< 0

x 2 C1

x 2 C2

(1⇥D ·M)
(D ·M ⇥D)

[w(2)]T

z = h[W(1)
x]

Convolutional Neural Network

W(1)

x

z

(D ·M ⇥D)(D ·M ⇥ 1)

Convolutional Neural Network

W(1)

x

z

(D ·M ⇥D)(D ·M ⇥ 1)

�
< 0

x 2 C1

x 2 C2
[w(2)]T {z}

2

4
0
0
0

3

5
T

(1⇥K)

Convolutional Neural Network

W(1)

x

z

(D ·M ⇥D)

 {z} = Dz
(K ⇥D ·M)

(D ·M ⇥ 1)

�
< 0

x 2 C1

x 2 C2
[w(2)]T {z}

2

4
0
0
0

3

5
T

(1⇥K)

Convolutional Neural Network

W(1)

x

z

(D ·M ⇥D)

 {z} = Dz
(K ⇥D ·M)

(D ·M ⇥ 1)

�
< 0

x 2 C1

x 2 C2
[w(2)]T {z}

2

4
0
0
0

3

5
T

(1⇥K)

“pooling”

How to train with million of images

Traditional machine learning algorithm cannot
handle large-scale data

Impact on Speech Recognition
Impact'on'speech'recogniJon

Impact on Object Recognition

ImageNet Challenge Year

Object'recogniJon
BC

(before ConvNets)
AD

(after deep learning)

6.8%

TIMIT*Phone*classificaUon* Accuracy*
Prior!art!(Clarkson!et!al.,1999)! 79.6%!

Feature!learning! 80.3%*

TIMIT*Speaker*idenUficaUon* Accuracy*
Prior!art!(Reynolds,!1995)! 99.7%!

Feature!learning! 100.0%*

Audio!

Images!

MulFmodal!(audio/video)!

CIFAR*Object*classificaUon* Accuracy*
Prior!art!(Ciresan!et!al.,!2011)!! 80.5%!

Feature!learning! 82.0%*

NORB*Object*classificaUon* Accuracy*
Prior!art!(Scherer!et!al.,!2010)! 94.4%!

Feature!learning! 95.0%*

AVLe_ers*Lip*reading* Accuracy*
Prior!art!(Zhao!et!al.,!2009)! 58.9%!

Stanford!Feature!learning! 65.8%*

Galaxy!

Hollywood2*ClassificaUon* Accuracy*
Prior!art!(Laptev!et!al.,!2004)! 48%!

Feature!learning! 53%*

KTH* Accuracy*
Prior!art!(Wang!et!al.,!2010)! 92.1%!

Feature!learning! 93.9%*

UCF* Accuracy*
Prior!art!(Wang!et!al.,!2010)! 85.6%!

Feature!learning! 86.5%*

YouTube* Accuracy*
Prior!art!(Liu!et!al.,!2009)! 71.2%!

Feature!learning! 75.8%*

Video!

Text/NLP!
Paraphrase*detecUon* Accuracy*
Prior!art!(Das!&!Smith,!2009)!! 76.1%!

Feature!learning! 76.4%*

SenUment*(MR/MPQA*data)* Accuracy*
Prior!art!(Nakagawa!et!al.,!2010)!! 77.3%!

Feature!learning! 77.7%*

Visualizing CNNs

More to read…

• Bishop “Pattern Recognition and Machine Learning”,
2006. Chapter 5.

http://P

