Having Fun with
OpenCV

Instructor - Simon Lucey

16-423 - Desighing Computer Vision Apps

Carnegie Mellon

Y THE ROBOTICS INSTITUTE

Today

» Course Logistics
* Philosophy to Mobile Computer Vision R&D
» Getting started with OpenCV.

About this Course

Chen-Hsuan Lin

(Instructor)

 Office hours: Tuesday 3:00pm - 4:00pm (or use Piazza)
» Course website has ALL information.

» Questions: Please use Piazza.

* Finding a project partner: Please use Piazza.

http://courses.16432.cs.cmu.edu

Assignments

* There will be 5 assignments - (5+ 10+ 10+ 10 + 10)%

» Each assignment will relate to the topics of the previous
lectures, but ALSO take us closer to the task of building
our OWN augmented reality app.

* First Assignment will be released on Monday
September 8th.

» Assignment is due Friday September 18th. (Tight)
 See course website for full schedule.

Assignments

» Goal is that every assignment takes you a step closer to
building your OWN augmented reality app.

* Assignments are designed to take us (step-by-step) towards
an augmented reality app.

MidTerm Exam

* Will cover first part of the course.
 Date fixed for November 3rd.
 No substitute date.

* There is no Final Exam.

Final Project

* Teams 1-2 (if it is something big we could discuss 3).

* Topic: efficient implementation of CV algorithm on a mobile
device.

* Until November 5th,

* think about a topic
* find a partner.

* Project Checkpoint November 24th.

» 2 page latex CVPR style document outlining the goal of the project and
background literature.

« Should also describe why a simplistic application of desktop algorithm
would be problematic on a mobile device. How are you going to
circumvent it?

* Or, employ a uniqgue/enhanced sensor on the mobile device (e.g. IMU,
high-speed camera, Structure |O depth sensor, etc.).

Background Material

» For the computer vision theory aspect of this
course we will be using Simon Prince’s new
textbook.

* Details on course website, and it is available free
COMPUTER online or can buy on Amazon.

VISION :
ot ol © Most other parts of course cannot be found in
books.

* | post all slides, and notes in the course on the
course website.

Background Material

* If you are completely new to OpenCV and
Xcode you should consider getting this
book too (link to Amazon.)

» Good beginners guide to using OpenCV in
Xcode, so you can build up additional
experience during the course.

http://www.amazon.com/gp/product/1782163840?psc=1&redirect=true&ref_=oh_aui_detailpage_o00_s01

Resources

* You will need access to a MAC.

* If you do not have a MAC, do not panic CMU has ample
MAC clusters on campus.

» See:- https://www.cmu.edu/computing/clusters/facilities/index.html

* We have IPADs for everyone in the class so that is cool
(yay!!!) so everyone should have an iOS device.

https://www.cmu.edu/computing/clusters/facilities/index.html

If you have a MAC

» Every student should have been automatically registered for
the Apple’'s Academic Developer Program (please contact us
If that is not the case).

» Please download the Xcode 7 Beta release (you need to be
an Apple Developer to download).

» Please ensure your MAC has the latest version of Yosemite.

* Please ensure your iI0OS device has the latest version 8.4.
* This will make life easy for you (less headaches for me).

Class Participation

* |'ll start on time.
* |t is important to attend.

| will use part slides, part tutorial, part on board.

* Do ask questions.
« Come to office hours or use Piazza.

Sep 1 Why is Computer Vision on a Mobile Device Different?

Sep 3 Having fun with OpenCV!

Sep 8 Using Xcode with OpenCV

Assignment O out

Sep 10 Pin Hole Cameras and Warp Functions
Sep 15 Homographies & the Fundamental Matrix
Sep 17 BLAS, LAPACK & the Armadillo Library

Assignment 1 out

Assignment O due (on Fri Sep 18)

Sep 22 Edge Detection & Segmentation

Sep 24 Hough Transform, ICP & Snakes

Sep 29 Interest Point Detectors & RANSAC

Oct 1 Accessing the GPU & the GPUImage Library

Assignment 2 out

Assignment 1 due (on Fri Oct 2)

see 16423.courses.cs.cmu.edu

http://16423.courses.cs.cmu.edu

Oct 6 The Lucas Kanade Algorithm:- Part 1

Oct 8 The Lucas Kanade Algorithm:- Part 2
Oct13 Object Detection & Tracking - Exhaustive Search
Oct 15 Correlation Filters for Fast Detection & Tracking

Assignment 3 out

Assignment 2 due (on Fri Oct 16)

Oct 20 Why we need Features/Descriptors in our Detectors?
Oct 22 Computationally Efficient Features & the VLFeat Library
Oct 27 Object Detection & Tracking - Gradient Search

Oct 29 IMU and High-Speed Camera on your Mobile

Assignment 4 out

Assignment 3 due (on Fri Oct 30)
Nov 3 Mid-Term

Nov 5 Guest Lecture (Using SWIFT in iOS - TBD)

Project Proposal due (on Fri Nov 6)

see 16423.courses.cs.cmu.edu

http://16423.courses.cs.cmu.edu

Nov 10

Nov 12

Nov 17

Nov 19

Nov 24

Dec 1

Dec 3

Dec 8

Dec 10

Deformable Parts Models
Optical Flow, SIFT Flow, and Deep Flow
Deep Networks in Vision

Using Deep Networks on a Mobile Device

Assignment 4 due (on Fri Nov 20)

Guest Lecture (Visual SLAM - TBD)

Project Checkpoint due (on Nov 24)
Random Forests

Depth Cameras on a Mobile Device
Wrap Up Lecture

Final Project Presentations

Final Project due (on Fri Dec 11)

see 16423.courses.cs.cmu.edu

http://16423.courses.cs.cmu.edu

Today

* Course Logistics
* Philosophy to Mobile Computer Vision R&D
» Getting started with OpenCV.

Applications of Computer Vision

“Pose Estimation” “‘Body Tracking”

“Speech Reading” “Palm Recognition” “Car Tracking”

Balancing Power versus Perception

18

Algorithm

Software

Architecture

SOC Hardware

lgorithm

Software

rchitecture

C Hardware

This CVPR2015 naner is the Onen Access version. nrovided bv the Comnuter Vision Foundati

Correlation Filters with Limited Boundaries

Hamed Kiani Galoogahi Terence Sim Simon Lucey
Istituto Italiano di Tecnologia National University of Singapore Carnegie Mellon University
Genova, Italy Singapore Pittsburgh, USA
hamed.kiani@iit.it tsim@comp.nus.edu.sg slucey@cs.cmu.edu

Abstract

Correlation filters take advantage of specific proper-
ties in the Fourier domain allowing them to be estimated
efficiently: O(NDlogD) in the frequency domain, ver-
sus O(D® + ND?) spatially where D is signal length,
and N is the number of signals. Recent extensions to cor-
relation filters, such as MOSSE, have reignited interest of
their use in the vision community due to their robustness
and attractive computational properties. In this paper we
demonstrate, however, that this computational efficiency

main, (ii) dramatically reduces boundary effects, and (iii)
is able to implicitly exploit all possible patches densely ex-
tracted from training examples during learning process. Im-
pressive object tracking and detection results are presented
in terms of both accuracy and computational efficiency.

1. Introduction

Correlation between two signals is a standard approach
to feature detection/matching. Correlation touches nearly
every facet of computer vision from pattern detection to ob-
ject tracking. Correlation is rarely performed naively in the
spatial domain. Instead, the fast Fourier transform (FFT)
affords the efficient application of correlating a desired tem-
plate/filter with a signal.

Correlation filters, developed initially in the seminal
work of Hester and Casasent [15], are a method for learning
a template/filter in the frequency domain that rose to some
prominence in the 80s and 90s. Although many variants
have been proposed [15, 18, 20, 19], the approach’s central
tenet is to learn a filter, that when correlated with a set of
training signals, gives a desired response, e.g. Figure 1 (b).
Like correlation, one of the central advantages of the ap-

Fim the example
the image from which the peak cOfrela®®I output should occur.
(b) The desired output response, based on (a), of the correlation
filter when applied to the entire image. (c) A subset of patch ex-
amples used in a canonical correlation filter where green denotes
a non-zero correlation output, and red denotes a zero correlation
output in direct accordance with (b). (d) A subset of patch ex-
amples used in our proposed correlation filter. Note that our pro-
posed approach uses all possible patches stemming from different
parts of the image, whereas the canonical correlation filter simply
employs circular shifted versions of the same single patch. The
central dilemma in this paper is how to perform (d) efficiently in
the Fourier domain. The two last patches of (d) show that %
patches near the image border are affected by circular shift in our
method which can be greatly diminished by choosing D << T,
where D and T indicate the length of the vectorized face patch in
(a) and the whole image in (a), respectively.

proach is that it attempts to learn the filter in the frequency
domain due to the efficiency of correlation in that domain.
Interest in correlation filters has been reignited in the vi-
sion world through the recent work of Bolme et al. [5] on
Minimum Output Sum of Squared Error (MOSSE) correla-
tion filters for object detection and tracking. Bolme et al.’s
work was able to circumvent some of the classical problems

4630

Algorithm

Software

5. Now apply some OpenCV operations
::Mat gray; cv::cvtColor(cvImage, gray,

CV_RGBA2GRAY); // Convert to grayscale

: :GaussianBlur(gray, gray, cv::Size(5,5), 1.2, 1.2); //
Apply Gaussian blur

: :Mat edges; cv::Canny(gray, edges, @, 50); // Estimate
edge map using Canny edge detector

[] 8 x [[[T& 4-way

SIMD (Single Instruction, Multiple Data)

Architecture

SOC Hardware

mobile chip

Bus
16-32 bits| System RAM
L L 4-64 MB
1 2 50-15- MHz
U |clle i ES.
h h
DSP, o & 8-16
ISP etc 32 MB - 2GB

SOC Hardware

Algoritarm -

Software

Architecture

SOC Hardware

MATLAB

Some Insights for Mobile CV

 Very difficult to write the fastest code.
* When you are prototyping an idea you should not worry about this, but
* You have to be aware of where bottle necks can occur.
* This is what you will learn in this course.

* Highest performance in general is non-portable.
* |f you want to get the most out of your system it is good to go deep.

* However, options like OpenCV are good when you need to build
something quickly that works.

 To build good computer vision apps you need to know them
algorithmically.
« Simply knowing how to write fast code is not enough.
* You need to also understand computer vision algorithmically.
* OpenCV can be dangerous here.

Some insights taken from Markus PUschel’s lectures on “How to Write fast Numerical Code”.

http://www.apple.com

Today

* Course Logistics
* Philosophy to Mobile Computer Vision R&D
» Getting started with OpenCV.

What is OpenCV??

* An open source BSD licensed computer vision library.

* Patent-encumbered code isolated into “non-free” module.

» SIFT, SURF, some of the Face Detectors, etc.
* Available on all major platforms
* Android, iOS, Linux, Mac OS X, Windows
» Written primarily in C++
* Bindings available for Python, Java, even MATLAB (in 3.0).

* Well documented at http://docs.opencv.org

« Source available at https://github.com/ltseez/opencv n

O

OpenCV

http://docs.opencv.org
https://github.com/Itseez/opencv

History of OpenCV

* OpenCV started by Intel Research in 1998.
» Goals originally were:-

* Advance vision research by providing not only open but also optimized
code for basic vision infrastructure. No more reinventing the wheel.

» Disseminate vision knowledge by providing a common infrastructure
that developers could build on, so that code would be more readily
readable and transferable.

» Advance vision-based commercial applications by making portable,
performance-optimized code available for free—with a license that did
not require to be open or free themselves.

* Originally released at CVPR 2000. n

O

OpenCV

OpenCV then and now.....

* Version 1.0 was released in 2006.

* |In 2008 obtained corporate support from Willow Garage
(Robotics Company).

* OpenCV 2 was released in 2009.

* Included major changes for C++ (mostly C beforehand).

* In 2012 support for OpenCV was taken over by a non-profit
foundation OpenCV.org.

* OpenCV 3 was released in 2014.

« Seems to be under corporate support from ltseez.
* More on these changes soon. n

O

OpenCV

https://www.willowgarage.com/
http://OpenCV.org
http://itseez.com/

OpenCV then and now....

Brought to you by: akamaev, ashishkov, etalanin, garybradski, and 4 others
A Home (Change File) Date Range: | 2001-03-15 to 2013-07-14

DOWNLOADS

Willow NVIDIA 2.4.5 6,741,009

150000 G ard g e In the selected date range
2.2 2.4

2.3 TOP COUNTRY *
& 2.1
Intel Japan

1.1 2.0
12% of downloaders

1.0

I TOPOS*
-
& tseez ! > Windows

2002-01 2004-01 2006-01 2008-01 2010-01 2012-01 76% of downloaders

Taken from OpenCV 3.0 latest news and the roadmap.

http://www.apple.com

What can OpenCV do?

itseez

Taken from OpenCV 3.0 latest news and the roadmap.

http://www.apple.com

OpenCV 3.0

Migration is relatively smooth from 2.4

e Mostly cleanings
— Refined C++ API
— Use cv::Algorithm everywhere

e API changes
— C API will be marked as deprecated

- Old Python API will be deprecated
— Monstrous modules will be split into micromodules — Extra modules

OpenCV 3.0

» Sufficiently improved CUDA and OpenCL modules

* Mobile CUDA support
* Universal OpenCL binaries (CPU, GPU)

* Hardware Abstraction Layer (HAL)

* IPP, FastCV-like low-level API to accelerate OpenCV on
different HW.

* Open-source NEON optimizations
* i0S, Android, Embedded.
« Latest NEWS - 40 NEON optimized functions in 3.0.

* Check out the transition guide.

http://code.opencv.org/projects/opencv/wiki/ChangeLog
http://docs.opencv.org/master/db/dfa/tutorial_transition_guide.html#gsc.tab=0

Which version will be using?

* OpenCV 3.0 is brand new, and is well worth a look and
play.
* Most vision tutorials are still in OpenCV 2.4.X.

* OpenCV 2.4 X is still the de facto library for computer
vision and image processing.

 Will remain like this until 3.0 matures.

Caution!

» Danger with OpenCV is that it allows
you to do a lot with very little
understanding for what is going on.

* |t is also assumed that you know
C++ going forward.

Key OpenCV Classes

Point_
Point3_
Size_
Vec
Matx
Scalar
Rect
Range
Mat

SparseMat
Ptr

(Taken from “OpenCV 2.4 Cheat Sheet”)

Template 2D point class
Template 3D point class
Template size (width, height) class

rm

I'emplate short vector class
Template small matrix class

4-element vector

Rectangle

Integer value range

2D or multi-dimensional dense array
(can be used to store matrices, images,
histograms, feature descriptors, voxel
volumes etc.)

Multi-dimensional sparse array

Template smart pointer class

http://docs.opencv.org/opencv_cheatsheet.pdf

Matrix Basics

Create a matrix
Mat image (240, 320, CV_8UC3);
|Re]allocate a pre-declared matrix
image.create (480, 640, CV_8UC3);
Create a matrix initialized with a constant
Mat A33(3, 3, CV_32F, Scalar(5));
Mat B33(3, 3, CV_32F); B33 = Scalar(b);
Mat C33 = Mat::ones(3, 3, CV_32F)%*5.;
Mat D33 = Mat::zeros(3, 3, CV_32F) + 5.;
Create a matrix initialized with specified values
double a = CV_PI/3;
Mat A22 = (Mat_<float>(2, 2) «
cos(a), -sin(a), sin(a), cos(a));
float B22datal[] = {cos(a), -sin(a), sin(a), cos(a)l};
Mat B22 = Mat(2, 2, CV_32F, B22data).clone();

(Taken from “OpenCV 2.4 Cheat Sheet”)

http://docs.opencv.org/opencv_cheatsheet.pdf

OpenCV 2.4 Cheat Sheet (C++)

The OpenCV C++ reference manual is here:
http: //docs. opencv. org. Use Quick Search to find
descriptions of the particular functions and classes

Key OpenCYV Classes

Point_ Template 2D point class

Point3_ Template 3D point class

Size_ Template size (width, height) class

Vec Template short vector class

Matx Template small matrix class

Scalar 4-element vector

Rect Rectangle

Range Integer value range

Mat 2D or multi-dimensional dense array
(can be used to store matrices, images,
histograms, feature descriptors, voxel
volumes etc.)

SparseMat Multi-dimensional sparse array

Ptr Template smart pointer class

Matrix Basics

Create a matrix
Mat image (240, 320, CV_8UC3);
[Re]allocate a pre-declared matrix
image.create(480, 640, CV_8UC3);
Create a matrix initialized with a constant
Mat A33(3, 3, CV_32F, Scalar(5));
Mat B33(3, 3, CV_32F); B33 = Scalar(5);
Mat C33 = Mat::ones(3, 3, CV_32F)%*5.;
Mat D33 = Mat::zeros(3, 3, CV_32F) + 5.;
Create a matrix initialized with specified values
double a = CV_PI/3;
Mat A22 = (Mat_<float>(2, 2) «
cos(a), -sin(a), sin(a), cos(a));
float B22datal[] = {cos(a), -sin(a), sin(a), cos(a)};
Mat B22 = Mat(2, 2, CV_32F, B22data).clone();
Initialize a random matrix
randu(image, Scalar(0), Scalar(256)); // uniform dist
randn(image, Scalar(128), Scalar(10)); // Gaussian dist
Convert matrix to/from other structures
(without copying the data)
Mat image_alias = image;
float* Idata=new float[480%640%*3];
Mat I(480, 640, CV_32FC3, Idata);
vector<Point> iptvec(10);
Mat iP(iptvec); //iP - 10zl CV_825C2 matriz
IplImage* 01dCO = cvCreateImage(cvSize(320,240),16,1);
Mat newC = cvarrToMat (01ldCO);
IplImage 01dCl1 = newC; CvMat o0ldC2 =
. (with copying the data)
Mat newC2 = cvarrToMat (01dCO).clone();
vector<Point2f> ptvec = Mat_<Point2f>(iP);

newC;

Access matrix elements
A33.at<float>(i,j) = A33.at<float>(j,i)+1;

(Taken from “OpenCV 2.4 Cheat Sheet”)

Mat dyImage(image.size(), image.type());
for(int y = 1; y < image.rows-1; y++) {
Vec3b* prevRow = image.ptr<Vec3b>(y-1);
Vec3b* nextRow = image.ptr<Vec3b>(y+1);
for(int x = 0; x < image.cols; x++)
for(int ¢ = 0; ¢c < 3; c++)
dyImage.at<Vec3b>(y,x) [c] =
saturate_cast<uchar>(
nextRow([x] [c] - prevRow[x][c]);

}

Mat_<Vec3b>::iterator it = image.begin<Vec3b>(),
itEnd = image.end<Vec3b>();

for(; it !'= itEnd; ++it)
(xit) [1] ~= 255;

Matrix Manipulations: Copying,
Shuffling, Part Access

src.copyTo(dst) Copy matrix to another one
src.convertTo(dst,type,scale,shift) Scale and convert to
another datatype

m.clone() Make deep copy of a matrix

m.reshape(nch,nrows) Change matrix dimensions and /or num-
ber of channels without copying data

m.row(i), m.col(i) Take a matrix row/column

m.rowRange (Range(i1,i2)) Take a matrix row/column span

m.colRange (Range (j1,3j2))

m.diag(i) Take a matrix diagonal

m(Range(il,i2) ,Range(j1,j2)),Take a submatrix
m(roi)

m.repeat (ny,nx)
flip(src,dst,dir)

Make a bigger matrix from a smaller one
Reverse the order of matrix rows and/or
columns

Split multi-channel matrix into separate
channels

Make a multi-channel matrix out of the
separate channels

Generalized form of split() and merge()
Randomly shuffle matrix elements

split(...)
merge(...)

mixChannels(...)
randShuffle(...)

Example 1. Smooth image ROI in-place
Mat imgroi = image(Rect (10, 20, 100, 100));
GaussianBlur (imgroi, imgroi, Size(5, 5), 1.2, 1.2);
Example 2. Somewhere in a linear algebra algorithm
m.row(i) += m.row(j)*alpha;
Example 3. Copy image ROI to another image with conversion
Rect r(1, 1, 10, 20);
Mat dstroi = dst(Rect(0,10,r.width,r.height));
src(r) .convertTo(dstroi, dstroi.type(), 1, 0);

Simple Matrix Operations

OpenCV implements most common arithmetical, logical and
other matrix operations, such as

e add(), subtract(), multiply(), divide(), absdiff (),
bitwise_and(), bitwise_or(), bitwise_xor (), max(),
min(), compare ()

— correspondingly, addition, subtraction, element-wise
multiplication ... comparison of two matrices or a
matrix and a scalar.

Example. Alpha compositing function:
void alphaCompose(const Mat& rgbal,
const Mat& rgba2, Mat& rgba_dest)

{
Mat al(rgbal.size(), rgbal.type()), ral;
Mat a2(rgba2.size(), rgba2.type());
int mixch[1={3, 0, 3, 1, 3, 2, 3, 3};
mixChannels(&rgbal, 1, &al, 1, mixch, 4);
mixChannels(&rgba2, 1, &a2, 1, mixch, 4);
subtract(Scalar::al1(255), al, ral);
bitwise_or(al, Scalar(0,0,0,255), al);
bitwise_or(a2, Scalar(0,0,0,255), a2);
multiply(a2, ral, a2, 1./255);
multiply(al, rgbal, al, 1./255);
multiply (a2, rgba2, a2, 1./255);
add(al, a2, rgba_dest);

}

e sum(), mean(), meanStdDev (), norm(), countNonZero(),
minMaxLoc(),
— various statistics of matrix elements.

e exp(), log(), pow(), sqrt (), cartToPolar(),
polarToCart ()
— the classical math functions.

e scaleAdd(), transpose(), gemm(), invert(), solve(),
determinant (), trace(), eigen(), SVD,
— the algebraic functions + SVD class.

o dft(), idft(), dct (), idct (),
— discrete Fourier and cosine transformations

For some operations a more convenient algebraic notation can
be used, for example:

Mat delta = (J.t()*J + lambdax*
Mat::eye(J.cols, J.cols, J.type()))
.inv(CV_SVD)*(J.t O *err);

implements the core of Levenberg-Marquardt optimization
algorithm.

Image Processsing

Filtering

filter2D() Non-separable linear filter

sepFilter2D() Separable linear filter

boxFilter (), Smooth the image with one of the linear

GaussianBlur (), or non-linear filters

medianBlur (),

bilateralFilter()

Sobel(), Scharr() Compute the spatial image derivatives
2 2

Laplacian() compute Laplacian: Al = % + g—yg

erode(), dilate() Morphological operations

http://docs.opencv.org/opencv_cheatsheet.pdf

Playing with the Mat Object Class

* We are now going to have a play with the Mat Object Class.
* On your browser please go to the address,

https://github.com/slucey-cs-cmu—-edu/Example OCV

* Or better yet, if you have git installed (just use brew install
git), you can type from the command line.

S git clone https://github.com/slucey-cs-cmu-edu/Example OCV.git

» See if you can run make on the command line to create the
Example OCV executable.

https://github.com/slucey-cs-cmu-edu/Example_OCV
https://github.com/slucey-cs-cmu-edu/Example_OCV.git

Displaying an Image in OpenCV

* On your browser please go to the address,

https://github.com/slucey-cs-cmu-edu/Show Lena

* Or again, you can type from the command line.

$ git clone https://github.com/slucey-cs-cmu-edu/Show Lena.git

« Question: what happens if you set the imread flag to 07

https://github.com/slucey-cs-cmu-edu/Example_OCV
https://github.com/slucey-cs-cmu-edu/Show_Lena.git

Detecting a Face in OpenCV

* On your browser please go to the address,

https://github.com/slucey-cs-cmu-edu/Detect Lena

* Or again, you can type from the command line.

$ git clone https://github.com/slucey-cs-cmu-edu/Detect Lena.git

* Questions: why do you need to clone the Mat image when
displaying?

https://github.com/slucey-cs-cmu-edu/Detect_Lena
https://github.com/slucey-cs-cmu-edu/Detect_Lena.git

Next Lecture

» Using OpenCV in Xcode.
» Using the Camera in Xcode.

» Checking performance.

