
Having Fun with
OpenCV
Instructor - Simon Lucey

16-423 - Designing Computer Vision Apps

Today

• Course Logistics

• Philosophy to Mobile Computer Vision R&D

• Getting started with OpenCV.

About this Course

• Team

• Office hours: Tuesday 3:00pm - 4:00pm (or use Piazza)
• Course website has ALL information.
• Questions: Please use Piazza.
• Finding a project partner: Please use Piazza.

Me

(Instructor) (TA)

Chen-Hsuan Lin

http://courses.16432.cs.cmu.edu

Assignments

• There will be 5 assignments - (5 + 10 + 10 + 10 + 10)%
• Each assignment will relate to the topics of the previous

lectures, but ALSO take us closer to the task of building
our OWN augmented reality app.

• First Assignment will be released on Monday
September 8th.

• Assignment is due Friday September 18th. (Tight)
• See course website for full schedule.

Assignments

• Goal is that every assignment takes you a step closer to
building your OWN augmented reality app.

• Assignments are designed to take us (step-by-step) towards
an augmented reality app.

MidTerm Exam

• Will cover first part of the course.
• Date fixed for November 3rd.
• No substitute date.

• There is no Final Exam.

Final Project

• Teams 1-2 (if it is something big we could discuss 3).
• Topic: efficient implementation of CV algorithm on a mobile

device.
• Until November 5th,

• think about a topic
• find a partner.

• Project Checkpoint November 24th.
• 2 page latex CVPR style document outlining the goal of the project and

background literature.
• Should also describe why a simplistic application of desktop algorithm

would be problematic on a mobile device. How are you going to
circumvent it?

• Or, employ a unique/enhanced sensor on the mobile device (e.g. IMU,
high-speed camera, Structure IO depth sensor, etc.).

Background Material

• For the computer vision theory aspect of this
course we will be using Simon Prince’s new
textbook.

• Details on course website, and it is available free
online or can buy on Amazon.

• Most other parts of course cannot be found in
books.

• I post all slides, and notes in the course on the
course website.

Background Material

• If you are completely new to OpenCV and
Xcode you should consider getting this
book too (link to Amazon.)

• Good beginners guide to using OpenCV in
Xcode, so you can build up additional
experience during the course.

http://www.amazon.com/gp/product/1782163840?psc=1&redirect=true&ref_=oh_aui_detailpage_o00_s01

Resources

• You will need access to a MAC.
• If you do not have a MAC, do not panic CMU has ample

MAC clusters on campus.
• See:- https://www.cmu.edu/computing/clusters/facilities/index.html
• We have iPADs for everyone in the class so that is cool

(yay!!!) so everyone should have an iOS device.

https://www.cmu.edu/computing/clusters/facilities/index.html

If you have a MAC

• Every student should have been automatically registered for
the Apple’s Academic Developer Program (please contact us
if that is not the case).

• Please download the Xcode 7 Beta release (you need to be
an Apple Developer to download).

• Please ensure your MAC has the latest version of Yosemite.
• Please ensure your iOS device has the latest version 8.4.
• This will make life easy for you (less headaches for me).

Class Participation

• I’ll start on time.
• It is important to attend.

• I will use part slides, part tutorial, part on board.

• Do ask questions.
• Come to office hours or use Piazza.

see 16423.courses.cs.cmu.edu

http://16423.courses.cs.cmu.edu

see 16423.courses.cs.cmu.edu

http://16423.courses.cs.cmu.edu

see 16423.courses.cs.cmu.edu

http://16423.courses.cs.cmu.edu

Today

• Course Logistics

• Philosophy to Mobile Computer Vision R&D

• Getting started with OpenCV.

Applications of Computer Vision

“Pose Estimation”“Face Recognition”

“Speech Reading” “Palm Recognition” “Car Tracking”

“Body Tracking”

Balancing Power versus Perception

18

Algorithm

Software

Architecture

SOC Hardware

Algorithm

Software

Architecture

SOC Hardware

Correlation Filters with Limited Boundaries

Hamed Kiani Galoogahi
Istituto Italiano di Tecnologia

Genova, Italy
hamed.kiani@iit.it

Terence Sim
National University of Singapore

Singapore
tsim@comp.nus.edu.sg

Simon Lucey
Carnegie Mellon University

Pittsburgh, USA
slucey@cs.cmu.edu

Abstract

Correlation filters take advantage of specific proper-

ties in the Fourier domain allowing them to be estimated

efficiently: O(ND logD) in the frequency domain, ver-

sus O(D3 + ND2) spatially where D is signal length,

and N is the number of signals. Recent extensions to cor-

relation filters, such as MOSSE, have reignited interest of

their use in the vision community due to their robustness

and attractive computational properties. In this paper we

demonstrate, however, that this computational efficiency

comes at a cost. Specifically, we demonstrate that only 1
D

proportion of shifted examples are unaffected by boundary

effects which has a dramatic effect on detection/tracking

performance. In this paper, we propose a novel approach

to correlation filter estimation that: (i) takes advantage of

inherent computational redundancies in the frequency do-

main, (ii) dramatically reduces boundary effects, and (iii)

is able to implicitly exploit all possible patches densely ex-

tracted from training examples during learning process. Im-

pressive object tracking and detection results are presented

in terms of both accuracy and computational efficiency.

1. Introduction

Correlation between two signals is a standard approach
to feature detection/matching. Correlation touches nearly
every facet of computer vision from pattern detection to ob-
ject tracking. Correlation is rarely performed naively in the
spatial domain. Instead, the fast Fourier transform (FFT)
affords the efficient application of correlating a desired tem-
plate/filter with a signal.

Correlation filters, developed initially in the seminal
work of Hester and Casasent [15], are a method for learning
a template/filter in the frequency domain that rose to some
prominence in the 80s and 90s. Although many variants
have been proposed [15, 18, 20, 19], the approach’s central
tenet is to learn a filter, that when correlated with a set of
training signals, gives a desired response, e.g. Figure 1 (b).
Like correlation, one of the central advantages of the ap-

(a) (b)

� �(c) (d)

Figure 1. (a) Defines the example of fixed spatial support within

the image from which the peak correlation output should occur.

(b) The desired output response, based on (a), of the correlation

filter when applied to the entire image. (c) A subset of patch ex-

amples used in a canonical correlation filter where green denotes

a non-zero correlation output, and red denotes a zero correlation

output in direct accordance with (b). (d) A subset of patch ex-

amples used in our proposed correlation filter. Note that our pro-

posed approach uses all possible patches stemming from different

parts of the image, whereas the canonical correlation filter simply

employs circular shifted versions of the same single patch. The

central dilemma in this paper is how to perform (d) efficiently in

the Fourier domain. The two last patches of (d) show that D−1

T

patches near the image border are affected by circular shift in our

method which can be greatly diminished by choosing D << T ,

where D and T indicate the length of the vectorized face patch in

(a) and the whole image in (a), respectively.

proach is that it attempts to learn the filter in the frequency
domain due to the efficiency of correlation in that domain.

Interest in correlation filters has been reignited in the vi-
sion world through the recent work of Bolme et al. [5] on
Minimum Output Sum of Squared Error (MOSSE) correla-
tion filters for object detection and tracking. Bolme et al.’s
work was able to circumvent some of the classical problems

Ax = b

Algorithm

Software

Architecture

Hardware

Algorithm

Software

Architecture

SOC Hardware

© Markus Püschel
Computer Science

How to write fast numerical code
Spring 2015

SIMD Vector Extensions

� What is it?
� Extension of the ISA
� Data types and instructions for the parallel computation on short

(length 2, 4, 8, …) vectors of integers or floats
� Names: MMX, SSE, SSE2, …

� Why do they exist?
� Useful: Many applications have the necessary fine-grain parallelism

Then: speedup by a factor close to vector length
� Doable: Relative easy to design; chip designers have enough transistors to

play with

+ x 4-way

5

© Markus Püschel
Computer Science

128 bit

256 bit

64 bit
(only int)

MMX:
Multimedia extension

SSE:
Streaming SIMD extension

AVX:
Advanced vector extensions

time

x86-64 / em64t

x86-32

x86-16

MMX

SSE

SSE2

SSE3

SSE4

8086

286

386
486
Pentium
Pentium MMX

Pentium III

Pentium 4

Pentium 4E

Pentium 4F

Core 2 Duo
Penryn
Core i7 (Nehalem)
Sandy Bridge
Haswell

Intel x86 Processors

AVX
AVX2

register
width

SIMD (Single Instruction, Multiple Data)

Algorithm

Software

Architecture

SOC Hardware

Figure 1. (a) A high-level block diagram of a mobile SoC system.
The GPU shares the system bus with the CPU and other computing
hardwares. (b) The processing flow and block diagram of an ultra-
low-power GeForce GPU in the Tegra SOC [3]. The inclusion of
caches and performing the depth culling before the pixel processing
help reduce the traffic to system memory and reduce the overall
power dissipation.

Programming API

OpenGL ES 2.0 [8] is the primary graphics programming
interface for handheld and embedded devices with a programmable
GPU: a programmable vertex shader and fragment shader for per
vertex position and per pixel calculation respectively. Other stages in
the rendering pipeline, such as rasterization and culling, remain as
fixed functions. OpenGL ES 2.0 is a subset of the widespread
adopted OpenGL standard used in desktop systems and game
consoles. This subset removes some redundancy from the OpenGL
API. For example, if multiple methods can perform the same
operation, the most useful method is adopted and other redundant
methods are removed. An example is that only vertex arrays are used
to specify geometry in OpenGL ES 2.0, whereas in OpenGL an
application can also use the immediate mode and the display lists in
addition to the vertex array to specify geometry. There are also new
features introduced to address specific constraints of handheld
devices. For example, to reduce the power consumption and increase
the performance of the shaders, precision qualifiers were introduced
to the shading language: lowp (10-bit fixed point format in the range
[-2,2), with a precision of 1/256), mediump (16-bit floating point
values in the range [-65520, 65520]), and highp (32-bit floating point
variables) [11].

To utilize a mobile GPU as a general-purpose accelerator,
programmers have to map the algorithms to the graphics operations,
and write the shader programs to configure the vertex and fragment
shaders. However, the graphics APIs expose little controllability to
the low-level hardware, and hence makes it less flexible to use the
GPU for general-purpose computing. For example, the graphics
APIs in the current versions of OpenGL ES do not have the “scatter”
operation (i.e. write to an arbitrary memory location), or thread-level
synchronization. The commonly used high-level APIs for a desktop
environment, such as CUDA [10] and OpenCL [9], are not supported
in the embedded platform yet.

MOBILE GP-GPU: CAPABILITY AND LIMITATIONS
We implemented Fast Fourier Transform (FFT), a kernel

computation of many image and signal processing algorithms, on a
mobile GPU with the intent of testing the applicability of utilizing
mobile GPU for higher level tasks. Its performance and power
consumption were then compared to a mobile CPU and a desktop
GPU. Our experiments were performed on an Nvidia Tegra SoC [3]
with the following specifications: a 1GHz dual-core ARM Cortex-
A9 CPU, 1GB of RAM, an Nvidia ultra-low-power GeForce GPU
running at 333MHz, and 512MB of Flash memory.

 FFT on GPU

A 1D FFT of sample N is defined as
 , where . In our study,
we examined an implementation of the Cooley-Tukey FFT
algorithm, based on the approach presented in [15], using OpenGL
ES 2.0 API and the shader language. The processing flow of the
Cooley-Tukey method is depicted in Figure 2. A total of
stages are required to complete the computation for N samples.
Samples in each stage form pairs between two groups, as shown in
the dotted box of Figure 2. The computation of this group is
expressed as: and . The coefficients
of each sample (i.e.) is pre-computed and stored as a texture
for the shader program to fetch. It should be noticed that the sign of
the coefficient is also included in the texture in order to avoid the
conditional computation (e.g. branches) within the shader program.

The transformation of a 2D image is done by applying 1D FFT to
rows and columns consecutively. For each stage, a quad is rendered
covering the entire 2D data array. Each stage requires a
texture of size to store the pre-computed coefficients. To
reduce the memory bandwidth between system memory and GPU
memory, the coefficients for the real part and the imaginary part are
stored in the two channels of the texture. Another texture storing the
fetch indices is required. Although it could be combined with
coefficient texture, such implementation is wasteful because indices
require a lower resolution texture than that required for coefficients.
Therefore, we allocate a texture with a lower resolution for fetch
indices to reduce the memory bandwidth. The iterative processing is
implemented by multiple rendering passes, with a floating point
framebuffer object (FBO) (Chapter 12 in [11]) to store the
intermediate rendering results.

Figure 2. Processing flow of a 8-sample 1D FFT

Comparison With Mobile CPU

The measured execution time and measured power consumption
of computing 2D complex FFT of various sizes on the Tegra CPU
and GPU are shown in the first and second rows respectively of
Table 1. The listed execution time is the average time of computing
FFT and IFFT 50 times. For FFT, the GPU is 3x faster
and consumes 8% more power than the CPU (1 second vs. 3.1
seconds, and 4.1 watts vs. 3.7 watts). The slightly higher power
when using GPU is because the CPU is not idle when the GPU is

(a)

(b)

Algorithm

Software

Architecture

SOC Hardware

Optimize

O
ptim

ize

OpenCVMATLAB

Some Insights for Mobile CV

• Very difficult to write the fastest code.
• When you are prototyping an idea you should not worry about this, but
• You have to be aware of where bottle necks can occur.
• This is what you will learn in this course.

• Highest performance in general is non-portable.
• If you want to get the most out of your system it is good to go deep.
• However, options like OpenCV are good when you need to build

something quickly that works.
• To build good computer vision apps you need to know them

algorithmically.
• Simply knowing how to write fast code is not enough.
• You need to also understand computer vision algorithmically.
• OpenCV can be dangerous here.

Some insights taken from Markus Püschel’s lectures on “How to Write fast Numerical Code”.

http://www.apple.com

Today

• Course Logistics

• Philosophy to Mobile Computer Vision R&D

• Getting started with OpenCV.

What is OpenCV??

• An open source BSD licensed computer vision library.

• Patent-encumbered code isolated into “non-free” module.

• SIFT, SURF, some of the Face Detectors, etc.

• Available on all major platforms

• Android, iOS, Linux, Mac OS X, Windows

• Written primarily in C++

• Bindings available for Python, Java, even MATLAB (in 3.0).

• Well documented at http://docs.opencv.org

• Source available at https://github.com/Itseez/opencv

http://docs.opencv.org
https://github.com/Itseez/opencv

History of OpenCV

• OpenCV started by Intel Research in 1998.
• Goals originally were:-

• Advance vision research by providing not only open but also optimized
code for basic vision infrastructure. No more reinventing the wheel.

• Disseminate vision knowledge by providing a common infrastructure
that developers could build on, so that code would be more readily
readable and transferable.

• Advance vision-based commercial applications by making portable,
performance-optimized code available for free—with a license that did
not require to be open or free themselves.

• Originally released at CVPR 2000.

OpenCV then and now…..

• Version 1.0 was released in 2006.
• In 2008 obtained corporate support from Willow Garage

(Robotics Company).
• OpenCV 2 was released in 2009.

• Included major changes for C++ (mostly C beforehand).

• In 2012 support for OpenCV was taken over by a non-profit
foundation OpenCV.org.

• OpenCV 3 was released in 2014.
• Seems to be under corporate support from Itseez.
• More on these changes soon.

https://www.willowgarage.com/
http://OpenCV.org
http://itseez.com/

OpenCV then and now….

History

NVIDIA Willow
Garage

Intel
1.0

1.1 2.0
2.1

2.2
2.3

2.4

2.4.5

Itseez

•  Professionally maintained by Itseez
•  GSoC, corporate contributions
•  Contributors from all around the world

Taken from OpenCV 3.0 latest news and the roadmap.

http://www.apple.com

What can OpenCV do?

Filters Segmentation

Detection and
recognition

Transformations

Image Processing

Video, Stereo, 3D

Calibration

Robust
features

Depth

Edges,
contours

Optical Flow Pose
estimation

Functionality overview

Taken from OpenCV 3.0 latest news and the roadmap.

http://www.apple.com

OpenCV 3.0

Migration is relatively smooth from 2.4
• Mostly cleanings  
– Refined C++ API 
– Use cv::Algorithm everywhere

• API changes  
– C API will be marked as deprecated

– Old Python API will be deprecated  
– Monstrous modules will be split into micromodules – Extra modules

OpenCV 3.0

• Sufficiently improved CUDA and OpenCL modules

• Mobile CUDA support

• Universal OpenCL binaries (CPU, GPU)

• Hardware Abstraction Layer (HAL)

• IPP, FastCV-like low-level API to accelerate OpenCV on
different HW.

• Open-source NEON optimizations

• iOS, Android, Embedded.

• Latest NEWS - 40 NEON optimized functions in 3.0.

• Check out the transition guide.

http://code.opencv.org/projects/opencv/wiki/ChangeLog
http://docs.opencv.org/master/db/dfa/tutorial_transition_guide.html#gsc.tab=0

Which version will be using?

• OpenCV 3.0 is brand new, and is well worth a look and
play.

• Most vision tutorials are still in OpenCV 2.4.X.
• OpenCV 2.4.X is still the de facto library for computer

vision and image processing.
• Will remain like this until 3.0 matures.

Caution!

• Danger with OpenCV is that it allows
you to do a lot with very little
understanding for what is going on.

• It is also assumed that you know
C++ going forward.

OpenCV 2.4 Cheat Sheet (C++)
The OpenCV C++ reference manual is here:
http: // docs. opencv. org . Use Quick Search to find
descriptions of the particular functions and classes

Key OpenCV Classes
Point_ Template 2D point class
Point3_ Template 3D point class
Size_ Template size (width, height) class
Vec Template short vector class
Matx Template small matrix class
Scalar 4-element vector
Rect Rectangle
Range Integer value range
Mat 2D or multi-dimensional dense array

(can be used to store matrices, images,
histograms, feature descriptors, voxel
volumes etc.)

SparseMat Multi-dimensional sparse array
Ptr Template smart pointer class

Matrix Basics
Create a matrix

Mat image(240, 320, CV_8UC3);
[Re]allocate a pre-declared matrix

image.create(480, 640, CV_8UC3);
Create a matrix initialized with a constant

Mat A33(3, 3, CV_32F, Scalar(5));
Mat B33(3, 3, CV_32F); B33 = Scalar(5);
Mat C33 = Mat::ones(3, 3, CV_32F)*5.;
Mat D33 = Mat::zeros(3, 3, CV_32F) + 5.;

Create a matrix initialized with specified values

double a = CV_PI/3;
Mat A22 = (Mat_<float>(2, 2) «

cos(a), -sin(a), sin(a), cos(a));
float B22data[] = {cos(a), -sin(a), sin(a), cos(a)};
Mat B22 = Mat(2, 2, CV_32F, B22data).clone();

Initialize a random matrix

randu(image, Scalar(0), Scalar(256)); // uniform dist
randn(image, Scalar(128), Scalar(10)); // Gaussian dist

Convert matrix to/from other structures

(without copying the data)

Mat image_alias = image;
float* Idata=new float[480*640*3];
Mat I(480, 640, CV_32FC3, Idata);
vector<Point> iptvec(10);
Mat iP(iptvec); // iP – 10x1 CV_32SC2 matrix
IplImage* oldC0 = cvCreateImage(cvSize(320,240),16,1);
Mat newC = cvarrToMat(oldC0);
IplImage oldC1 = newC; CvMat oldC2 = newC;

... (with copying the data)

Mat newC2 = cvarrToMat(oldC0).clone();
vector<Point2f> ptvec = Mat_<Point2f>(iP);

Access matrix elements

A33.at<float>(i,j) = A33.at<float>(j,i)+1;

Mat dyImage(image.size(), image.type());
for(int y = 1; y < image.rows-1; y++) {

Vec3b* prevRow = image.ptr<Vec3b>(y-1);
Vec3b* nextRow = image.ptr<Vec3b>(y+1);
for(int x = 0; x < image.cols; x++)
for(int c = 0; c < 3; c++)
dyImage.at<Vec3b>(y,x)[c] =
saturate_cast<uchar>(
nextRow[x][c] - prevRow[x][c]);

}
Mat_<Vec3b>::iterator it = image.begin<Vec3b>(),

itEnd = image.end<Vec3b>();
for(; it != itEnd; ++it)

(*it)[1] ^= 255;

Matrix Manipulations: Copying,
Shuffling, Part Access
src.copyTo(dst) Copy matrix to another one
src.convertTo(dst,type,scale,shift) Scale and convert to

another datatype
m.clone() Make deep copy of a matrix
m.reshape(nch,nrows)Change matrix dimensions and/or num-

ber of channels without copying data
m.row(i), m.col(i) Take a matrix row/column
m.rowRange(Range(i1,i2))
m.colRange(Range(j1,j2))

Take a matrix row/column span

m.diag(i) Take a matrix diagonal
m(Range(i1,i2),Range(j1,j2)),
m(roi)

Take a submatrix

m.repeat(ny,nx) Make a bigger matrix from a smaller one
flip(src,dst,dir) Reverse the order of matrix rows and/or

columns
split(...) Split multi-channel matrix into separate

channels
merge(...) Make a multi-channel matrix out of the

separate channels
mixChannels(...) Generalized form of split() and merge()
randShuffle(...) Randomly shuffle matrix elements

Example 1. Smooth image ROI in-place
Mat imgroi = image(Rect(10, 20, 100, 100));
GaussianBlur(imgroi, imgroi, Size(5, 5), 1.2, 1.2);

Example 2. Somewhere in a linear algebra algorithm
m.row(i) += m.row(j)*alpha;

Example 3. Copy image ROI to another image with conversion
Rect r(1, 1, 10, 20);
Mat dstroi = dst(Rect(0,10,r.width,r.height));
src(r).convertTo(dstroi, dstroi.type(), 1, 0);

Simple Matrix Operations
OpenCV implements most common arithmetical, logical and
other matrix operations, such as

• add(), subtract(), multiply(), divide(), absdiff(),
bitwise_and(), bitwise_or(), bitwise_xor(), max(),
min(), compare()
– correspondingly, addition, subtraction, element-wise
multiplication ... comparison of two matrices or a
matrix and a scalar.

Example. Alpha compositing function:
void alphaCompose(const Mat& rgba1,

const Mat& rgba2, Mat& rgba_dest)
{

Mat a1(rgba1.size(), rgba1.type()), ra1;
Mat a2(rgba2.size(), rgba2.type());
int mixch[]={3, 0, 3, 1, 3, 2, 3, 3};
mixChannels(&rgba1, 1, &a1, 1, mixch, 4);
mixChannels(&rgba2, 1, &a2, 1, mixch, 4);
subtract(Scalar::all(255), a1, ra1);
bitwise_or(a1, Scalar(0,0,0,255), a1);
bitwise_or(a2, Scalar(0,0,0,255), a2);
multiply(a2, ra1, a2, 1./255);
multiply(a1, rgba1, a1, 1./255);
multiply(a2, rgba2, a2, 1./255);
add(a1, a2, rgba_dest);

}

• sum(), mean(), meanStdDev(), norm(), countNonZero(),
minMaxLoc(),
– various statistics of matrix elements.

• exp(), log(), pow(), sqrt(), cartToPolar(),
polarToCart()
– the classical math functions.

• scaleAdd(), transpose(), gemm(), invert(), solve(),
determinant(), trace(), eigen(), SVD,
– the algebraic functions + SVD class.

• dft(), idft(), dct(), idct(),
– discrete Fourier and cosine transformations

For some operations a more convenient algebraic notation can
be used, for example:

Mat delta = (J.t()*J + lambda*
Mat::eye(J.cols, J.cols, J.type()))
.inv(CV_SVD)*(J.t()*err);

implements the core of Levenberg-Marquardt optimization
algorithm.

Image Processsing
Filtering
filter2D() Non-separable linear filter
sepFilter2D() Separable linear filter
boxFilter(),
GaussianBlur(),
medianBlur(),
bilateralFilter()

Smooth the image with one of the linear
or non-linear filters

Sobel(), Scharr() Compute the spatial image derivatives
Laplacian() compute Laplacian: �I = @

2
I

@x

2 + @

2
I

@y

2

erode(), dilate() Morphological operations

1

(Taken from “OpenCV 2.4 Cheat Sheet”)

http://docs.opencv.org/opencv_cheatsheet.pdf

OpenCV 2.4 Cheat Sheet (C++)
The OpenCV C++ reference manual is here:
http: // docs. opencv. org . Use Quick Search to find
descriptions of the particular functions and classes

Key OpenCV Classes
Point_ Template 2D point class
Point3_ Template 3D point class
Size_ Template size (width, height) class
Vec Template short vector class
Matx Template small matrix class
Scalar 4-element vector
Rect Rectangle
Range Integer value range
Mat 2D or multi-dimensional dense array

(can be used to store matrices, images,
histograms, feature descriptors, voxel
volumes etc.)

SparseMat Multi-dimensional sparse array
Ptr Template smart pointer class

Matrix Basics
Create a matrix

Mat image(240, 320, CV_8UC3);
[Re]allocate a pre-declared matrix

image.create(480, 640, CV_8UC3);
Create a matrix initialized with a constant

Mat A33(3, 3, CV_32F, Scalar(5));
Mat B33(3, 3, CV_32F); B33 = Scalar(5);
Mat C33 = Mat::ones(3, 3, CV_32F)*5.;
Mat D33 = Mat::zeros(3, 3, CV_32F) + 5.;

Create a matrix initialized with specified values

double a = CV_PI/3;
Mat A22 = (Mat_<float>(2, 2) «

cos(a), -sin(a), sin(a), cos(a));
float B22data[] = {cos(a), -sin(a), sin(a), cos(a)};
Mat B22 = Mat(2, 2, CV_32F, B22data).clone();

Initialize a random matrix

randu(image, Scalar(0), Scalar(256)); // uniform dist
randn(image, Scalar(128), Scalar(10)); // Gaussian dist

Convert matrix to/from other structures

(without copying the data)

Mat image_alias = image;
float* Idata=new float[480*640*3];
Mat I(480, 640, CV_32FC3, Idata);
vector<Point> iptvec(10);
Mat iP(iptvec); // iP – 10x1 CV_32SC2 matrix
IplImage* oldC0 = cvCreateImage(cvSize(320,240),16,1);
Mat newC = cvarrToMat(oldC0);
IplImage oldC1 = newC; CvMat oldC2 = newC;

... (with copying the data)

Mat newC2 = cvarrToMat(oldC0).clone();
vector<Point2f> ptvec = Mat_<Point2f>(iP);

Access matrix elements

A33.at<float>(i,j) = A33.at<float>(j,i)+1;

Mat dyImage(image.size(), image.type());
for(int y = 1; y < image.rows-1; y++) {

Vec3b* prevRow = image.ptr<Vec3b>(y-1);
Vec3b* nextRow = image.ptr<Vec3b>(y+1);
for(int x = 0; x < image.cols; x++)
for(int c = 0; c < 3; c++)
dyImage.at<Vec3b>(y,x)[c] =
saturate_cast<uchar>(
nextRow[x][c] - prevRow[x][c]);

}
Mat_<Vec3b>::iterator it = image.begin<Vec3b>(),

itEnd = image.end<Vec3b>();
for(; it != itEnd; ++it)

(*it)[1] ^= 255;

Matrix Manipulations: Copying,
Shuffling, Part Access
src.copyTo(dst) Copy matrix to another one
src.convertTo(dst,type,scale,shift) Scale and convert to

another datatype
m.clone() Make deep copy of a matrix
m.reshape(nch,nrows)Change matrix dimensions and/or num-

ber of channels without copying data
m.row(i), m.col(i) Take a matrix row/column
m.rowRange(Range(i1,i2))
m.colRange(Range(j1,j2))

Take a matrix row/column span

m.diag(i) Take a matrix diagonal
m(Range(i1,i2),Range(j1,j2)),
m(roi)

Take a submatrix

m.repeat(ny,nx) Make a bigger matrix from a smaller one
flip(src,dst,dir) Reverse the order of matrix rows and/or

columns
split(...) Split multi-channel matrix into separate

channels
merge(...) Make a multi-channel matrix out of the

separate channels
mixChannels(...) Generalized form of split() and merge()
randShuffle(...) Randomly shuffle matrix elements

Example 1. Smooth image ROI in-place
Mat imgroi = image(Rect(10, 20, 100, 100));
GaussianBlur(imgroi, imgroi, Size(5, 5), 1.2, 1.2);

Example 2. Somewhere in a linear algebra algorithm
m.row(i) += m.row(j)*alpha;

Example 3. Copy image ROI to another image with conversion
Rect r(1, 1, 10, 20);
Mat dstroi = dst(Rect(0,10,r.width,r.height));
src(r).convertTo(dstroi, dstroi.type(), 1, 0);

Simple Matrix Operations
OpenCV implements most common arithmetical, logical and
other matrix operations, such as

• add(), subtract(), multiply(), divide(), absdiff(),
bitwise_and(), bitwise_or(), bitwise_xor(), max(),
min(), compare()
– correspondingly, addition, subtraction, element-wise
multiplication ... comparison of two matrices or a
matrix and a scalar.

Example. Alpha compositing function:
void alphaCompose(const Mat& rgba1,

const Mat& rgba2, Mat& rgba_dest)
{

Mat a1(rgba1.size(), rgba1.type()), ra1;
Mat a2(rgba2.size(), rgba2.type());
int mixch[]={3, 0, 3, 1, 3, 2, 3, 3};
mixChannels(&rgba1, 1, &a1, 1, mixch, 4);
mixChannels(&rgba2, 1, &a2, 1, mixch, 4);
subtract(Scalar::all(255), a1, ra1);
bitwise_or(a1, Scalar(0,0,0,255), a1);
bitwise_or(a2, Scalar(0,0,0,255), a2);
multiply(a2, ra1, a2, 1./255);
multiply(a1, rgba1, a1, 1./255);
multiply(a2, rgba2, a2, 1./255);
add(a1, a2, rgba_dest);

}

• sum(), mean(), meanStdDev(), norm(), countNonZero(),
minMaxLoc(),
– various statistics of matrix elements.

• exp(), log(), pow(), sqrt(), cartToPolar(),
polarToCart()
– the classical math functions.

• scaleAdd(), transpose(), gemm(), invert(), solve(),
determinant(), trace(), eigen(), SVD,
– the algebraic functions + SVD class.

• dft(), idft(), dct(), idct(),
– discrete Fourier and cosine transformations

For some operations a more convenient algebraic notation can
be used, for example:

Mat delta = (J.t()*J + lambda*
Mat::eye(J.cols, J.cols, J.type()))
.inv(CV_SVD)*(J.t()*err);

implements the core of Levenberg-Marquardt optimization
algorithm.

Image Processsing
Filtering
filter2D() Non-separable linear filter
sepFilter2D() Separable linear filter
boxFilter(),
GaussianBlur(),
medianBlur(),
bilateralFilter()

Smooth the image with one of the linear
or non-linear filters

Sobel(), Scharr() Compute the spatial image derivatives
Laplacian() compute Laplacian: �I = @

2
I

@x

2 + @

2
I

@y

2

erode(), dilate() Morphological operations

1

(Taken from “OpenCV 2.4 Cheat Sheet”)

http://docs.opencv.org/opencv_cheatsheet.pdf

OpenCV 2.4 Cheat Sheet (C++)
The OpenCV C++ reference manual is here:
http: // docs. opencv. org . Use Quick Search to find
descriptions of the particular functions and classes

Key OpenCV Classes
Point_ Template 2D point class
Point3_ Template 3D point class
Size_ Template size (width, height) class
Vec Template short vector class
Matx Template small matrix class
Scalar 4-element vector
Rect Rectangle
Range Integer value range
Mat 2D or multi-dimensional dense array

(can be used to store matrices, images,
histograms, feature descriptors, voxel
volumes etc.)

SparseMat Multi-dimensional sparse array
Ptr Template smart pointer class

Matrix Basics
Create a matrix

Mat image(240, 320, CV_8UC3);
[Re]allocate a pre-declared matrix

image.create(480, 640, CV_8UC3);
Create a matrix initialized with a constant

Mat A33(3, 3, CV_32F, Scalar(5));
Mat B33(3, 3, CV_32F); B33 = Scalar(5);
Mat C33 = Mat::ones(3, 3, CV_32F)*5.;
Mat D33 = Mat::zeros(3, 3, CV_32F) + 5.;

Create a matrix initialized with specified values

double a = CV_PI/3;
Mat A22 = (Mat_<float>(2, 2) «

cos(a), -sin(a), sin(a), cos(a));
float B22data[] = {cos(a), -sin(a), sin(a), cos(a)};
Mat B22 = Mat(2, 2, CV_32F, B22data).clone();

Initialize a random matrix

randu(image, Scalar(0), Scalar(256)); // uniform dist
randn(image, Scalar(128), Scalar(10)); // Gaussian dist

Convert matrix to/from other structures

(without copying the data)

Mat image_alias = image;
float* Idata=new float[480*640*3];
Mat I(480, 640, CV_32FC3, Idata);
vector<Point> iptvec(10);
Mat iP(iptvec); // iP – 10x1 CV_32SC2 matrix
IplImage* oldC0 = cvCreateImage(cvSize(320,240),16,1);
Mat newC = cvarrToMat(oldC0);
IplImage oldC1 = newC; CvMat oldC2 = newC;

... (with copying the data)

Mat newC2 = cvarrToMat(oldC0).clone();
vector<Point2f> ptvec = Mat_<Point2f>(iP);

Access matrix elements

A33.at<float>(i,j) = A33.at<float>(j,i)+1;

Mat dyImage(image.size(), image.type());
for(int y = 1; y < image.rows-1; y++) {

Vec3b* prevRow = image.ptr<Vec3b>(y-1);
Vec3b* nextRow = image.ptr<Vec3b>(y+1);
for(int x = 0; x < image.cols; x++)
for(int c = 0; c < 3; c++)
dyImage.at<Vec3b>(y,x)[c] =
saturate_cast<uchar>(
nextRow[x][c] - prevRow[x][c]);

}
Mat_<Vec3b>::iterator it = image.begin<Vec3b>(),

itEnd = image.end<Vec3b>();
for(; it != itEnd; ++it)

(*it)[1] ^= 255;

Matrix Manipulations: Copying,
Shuffling, Part Access
src.copyTo(dst) Copy matrix to another one
src.convertTo(dst,type,scale,shift) Scale and convert to

another datatype
m.clone() Make deep copy of a matrix
m.reshape(nch,nrows)Change matrix dimensions and/or num-

ber of channels without copying data
m.row(i), m.col(i) Take a matrix row/column
m.rowRange(Range(i1,i2))
m.colRange(Range(j1,j2))

Take a matrix row/column span

m.diag(i) Take a matrix diagonal
m(Range(i1,i2),Range(j1,j2)),
m(roi)

Take a submatrix

m.repeat(ny,nx) Make a bigger matrix from a smaller one
flip(src,dst,dir) Reverse the order of matrix rows and/or

columns
split(...) Split multi-channel matrix into separate

channels
merge(...) Make a multi-channel matrix out of the

separate channels
mixChannels(...) Generalized form of split() and merge()
randShuffle(...) Randomly shuffle matrix elements

Example 1. Smooth image ROI in-place
Mat imgroi = image(Rect(10, 20, 100, 100));
GaussianBlur(imgroi, imgroi, Size(5, 5), 1.2, 1.2);

Example 2. Somewhere in a linear algebra algorithm
m.row(i) += m.row(j)*alpha;

Example 3. Copy image ROI to another image with conversion
Rect r(1, 1, 10, 20);
Mat dstroi = dst(Rect(0,10,r.width,r.height));
src(r).convertTo(dstroi, dstroi.type(), 1, 0);

Simple Matrix Operations
OpenCV implements most common arithmetical, logical and
other matrix operations, such as

• add(), subtract(), multiply(), divide(), absdiff(),
bitwise_and(), bitwise_or(), bitwise_xor(), max(),
min(), compare()
– correspondingly, addition, subtraction, element-wise
multiplication ... comparison of two matrices or a
matrix and a scalar.

Example. Alpha compositing function:
void alphaCompose(const Mat& rgba1,

const Mat& rgba2, Mat& rgba_dest)
{

Mat a1(rgba1.size(), rgba1.type()), ra1;
Mat a2(rgba2.size(), rgba2.type());
int mixch[]={3, 0, 3, 1, 3, 2, 3, 3};
mixChannels(&rgba1, 1, &a1, 1, mixch, 4);
mixChannels(&rgba2, 1, &a2, 1, mixch, 4);
subtract(Scalar::all(255), a1, ra1);
bitwise_or(a1, Scalar(0,0,0,255), a1);
bitwise_or(a2, Scalar(0,0,0,255), a2);
multiply(a2, ra1, a2, 1./255);
multiply(a1, rgba1, a1, 1./255);
multiply(a2, rgba2, a2, 1./255);
add(a1, a2, rgba_dest);

}

• sum(), mean(), meanStdDev(), norm(), countNonZero(),
minMaxLoc(),
– various statistics of matrix elements.

• exp(), log(), pow(), sqrt(), cartToPolar(),
polarToCart()
– the classical math functions.

• scaleAdd(), transpose(), gemm(), invert(), solve(),
determinant(), trace(), eigen(), SVD,
– the algebraic functions + SVD class.

• dft(), idft(), dct(), idct(),
– discrete Fourier and cosine transformations

For some operations a more convenient algebraic notation can
be used, for example:

Mat delta = (J.t()*J + lambda*
Mat::eye(J.cols, J.cols, J.type()))
.inv(CV_SVD)*(J.t()*err);

implements the core of Levenberg-Marquardt optimization
algorithm.

Image Processsing
Filtering
filter2D() Non-separable linear filter
sepFilter2D() Separable linear filter
boxFilter(),
GaussianBlur(),
medianBlur(),
bilateralFilter()

Smooth the image with one of the linear
or non-linear filters

Sobel(), Scharr() Compute the spatial image derivatives
Laplacian() compute Laplacian: �I = @

2
I

@x

2 + @

2
I

@y

2

erode(), dilate() Morphological operations

1(Taken from “OpenCV 2.4 Cheat Sheet”)

http://docs.opencv.org/opencv_cheatsheet.pdf

Playing with the Mat Object Class

• We are now going to have a play with the Mat Object Class.
• On your browser please go to the address,

https://github.com/slucey-cs-cmu-edu/Example_OCV

• Or better yet, if you have git installed (just use brew install
git), you can type from the command line.

$ git clone https://github.com/slucey-cs-cmu-edu/Example_OCV.git

• See if you can run make on the command line to create the
Example_OCV executable.

https://github.com/slucey-cs-cmu-edu/Example_OCV
https://github.com/slucey-cs-cmu-edu/Example_OCV.git

Displaying an Image in OpenCV

• On your browser please go to the address,

https://github.com/slucey-cs-cmu-edu/Show_Lena

• Or again, you can type from the command line.

$ git clone https://github.com/slucey-cs-cmu-edu/Show_Lena.git

• Question: what happens if you set the imread flag to 0?

https://github.com/slucey-cs-cmu-edu/Example_OCV
https://github.com/slucey-cs-cmu-edu/Show_Lena.git

Detecting a Face in OpenCV

• On your browser please go to the address,

https://github.com/slucey-cs-cmu-edu/Detect_Lena

• Or again, you can type from the command line.

$ git clone https://github.com/slucey-cs-cmu-edu/Detect_Lena.git

• Questions: why do you need to clone the Mat image when
displaying?

https://github.com/slucey-cs-cmu-edu/Detect_Lena
https://github.com/slucey-cs-cmu-edu/Detect_Lena.git

Next Lecture

• Using OpenCV in Xcode.

• Using the Camera in Xcode.

• Checking performance.

