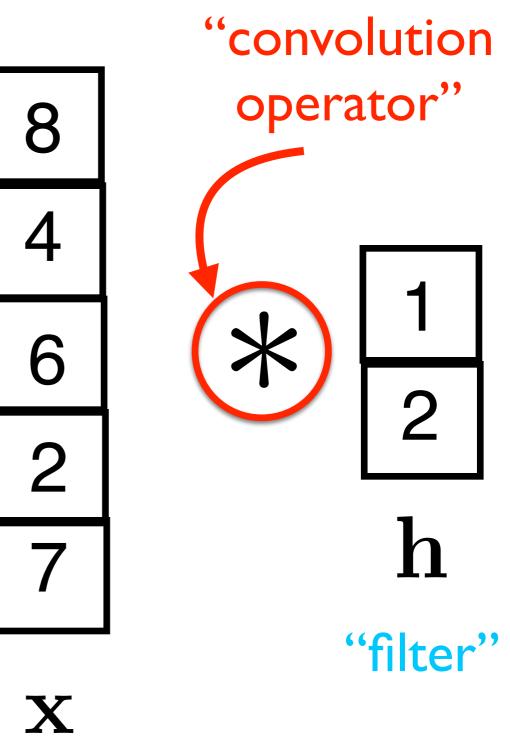
Correlation Filters

Instructor - Simon Lucey

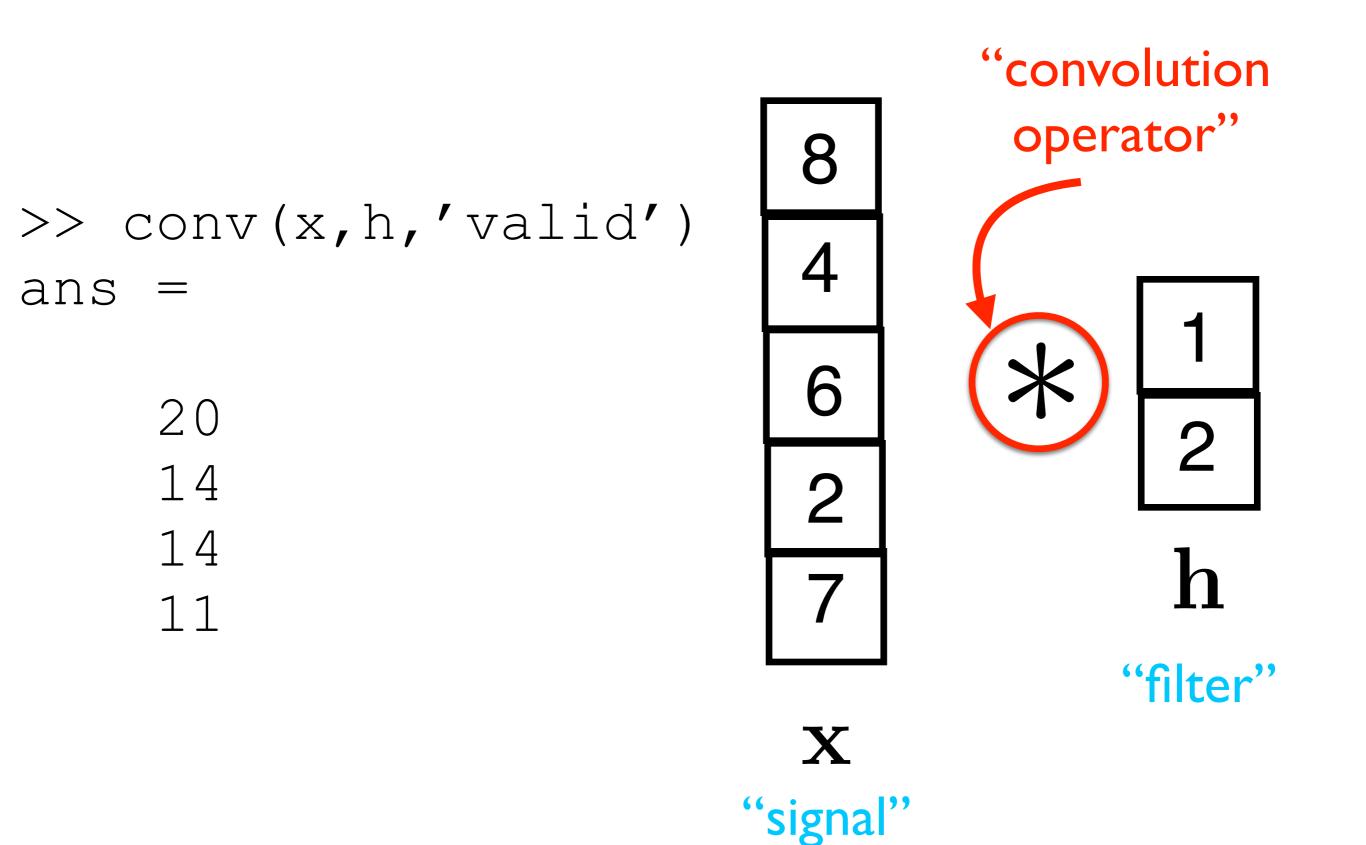
16-423 - Designing Computer Vision Apps

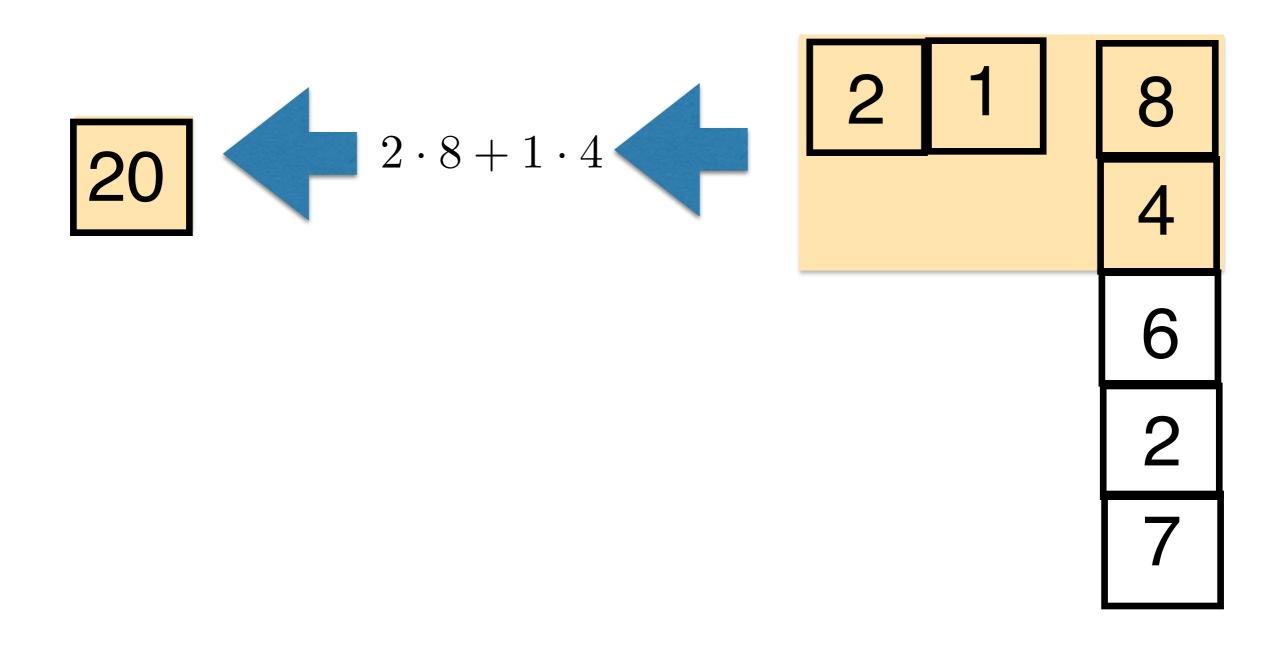
Today

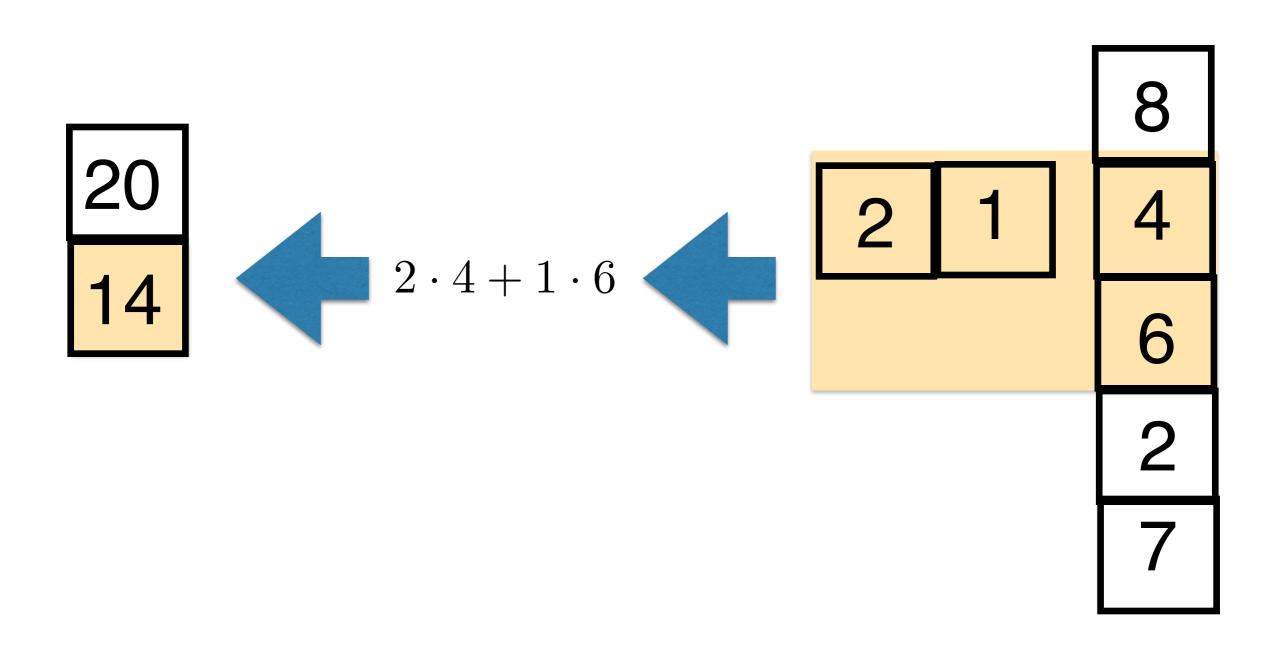
- Types of Convolution
- Fast Fourier Transform (FFT)
- The Correlation Filter

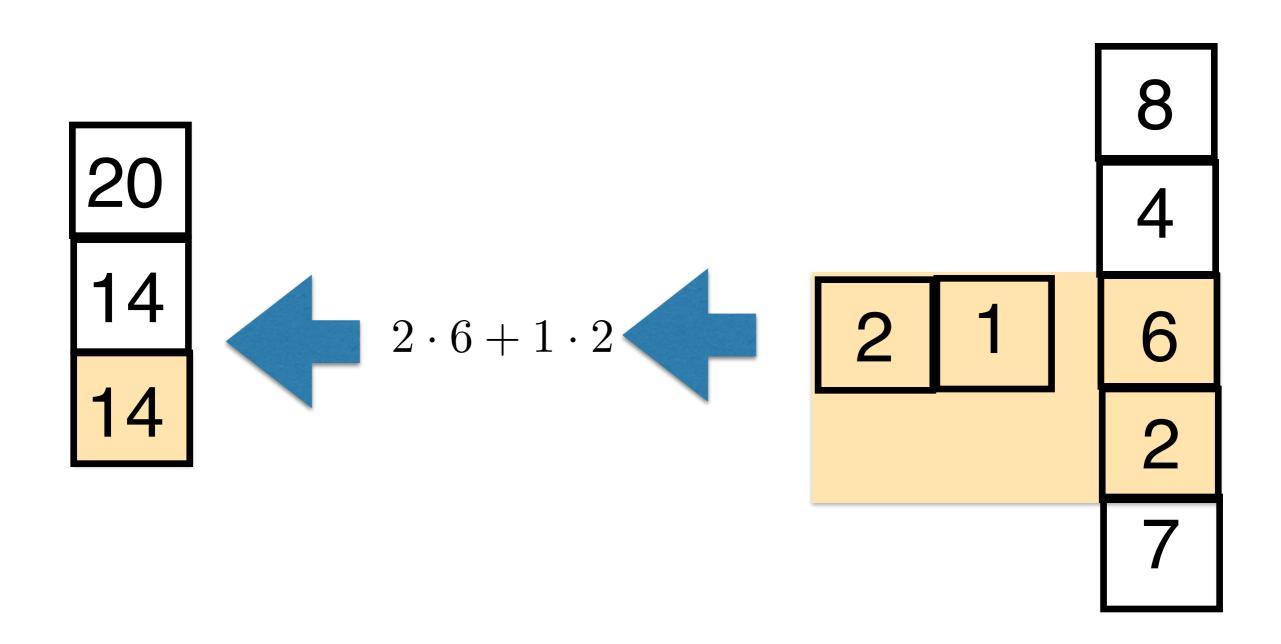


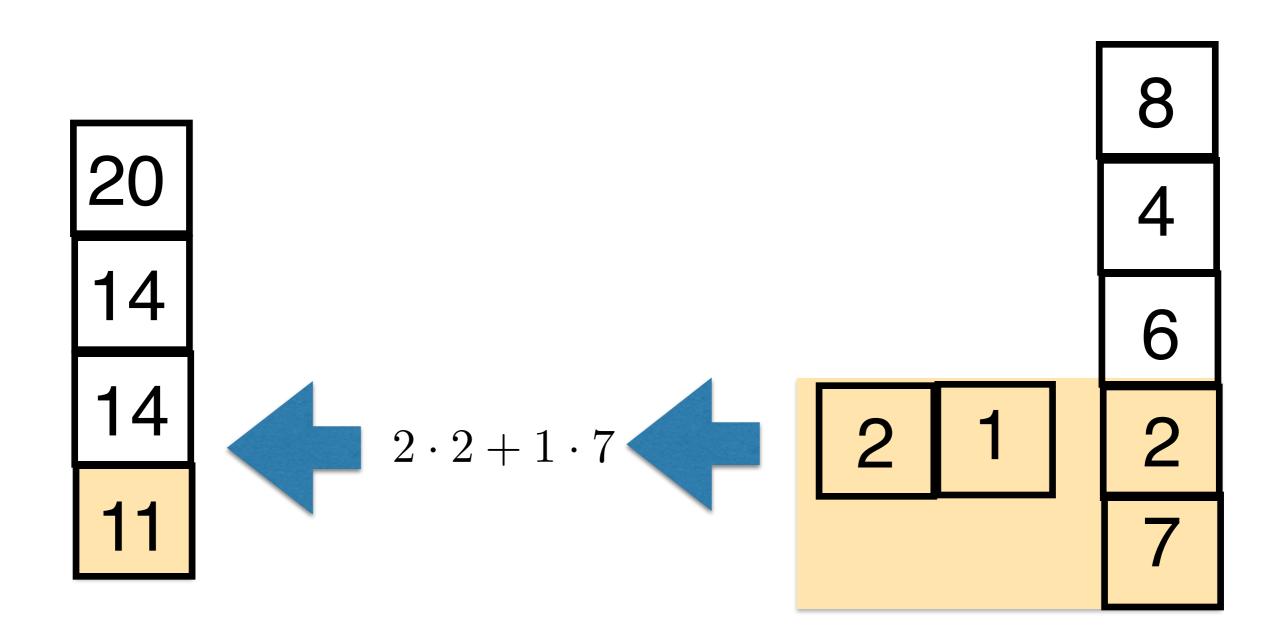
"signal"

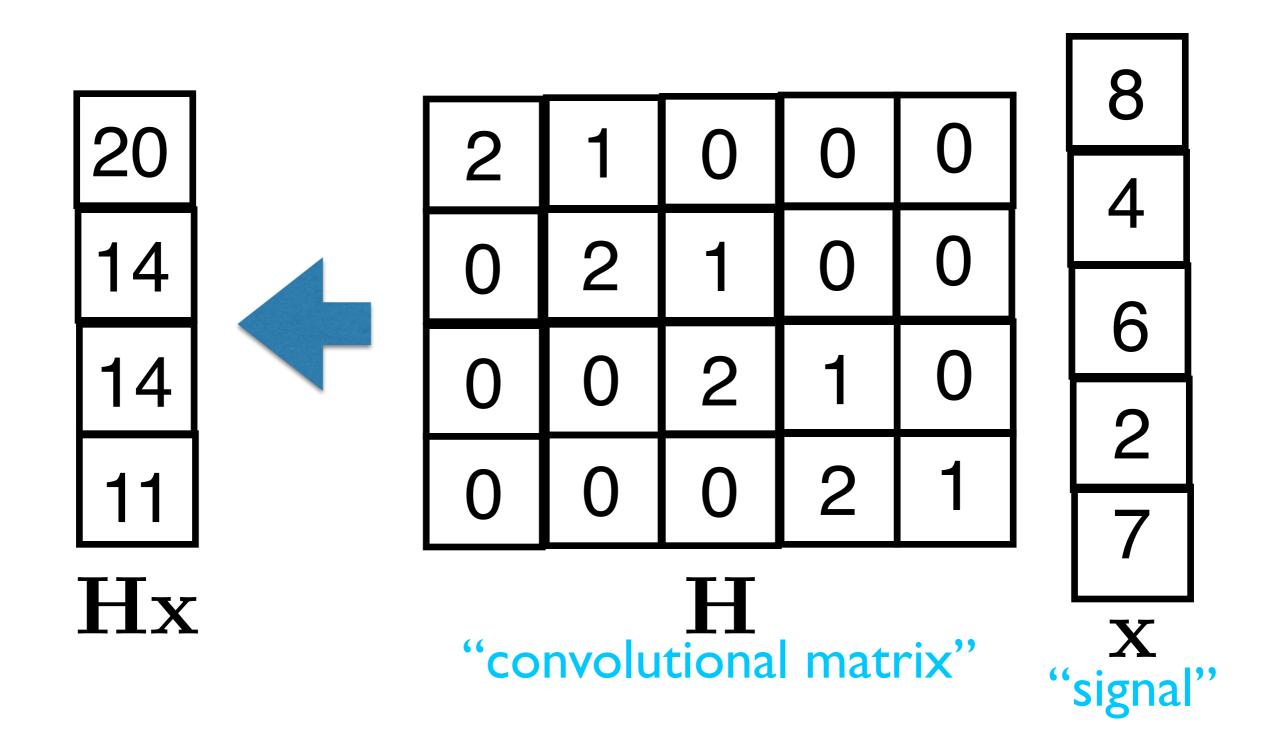










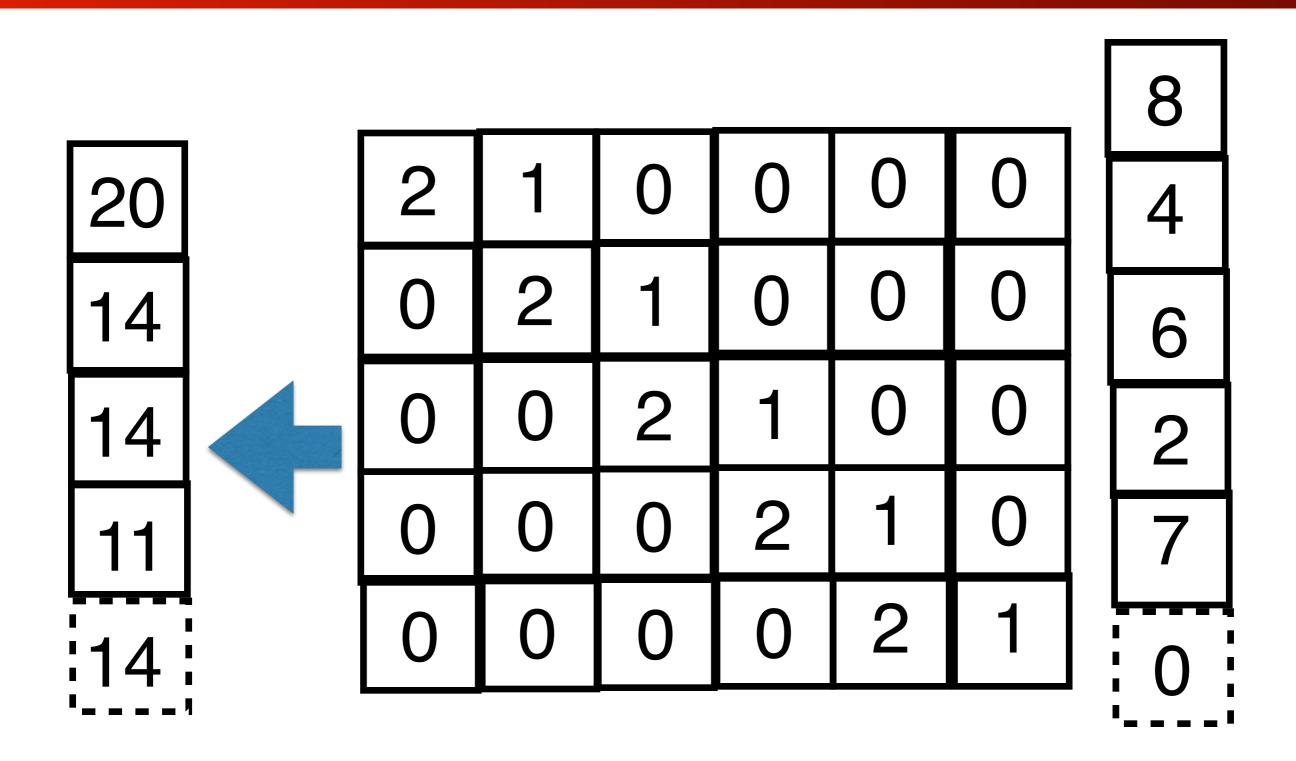


Types of Convolution

- More than just one type of convolutional operator:-
 - "Valid" convolution
 - >> conv(x,h,'valid')
 "Same" convolution

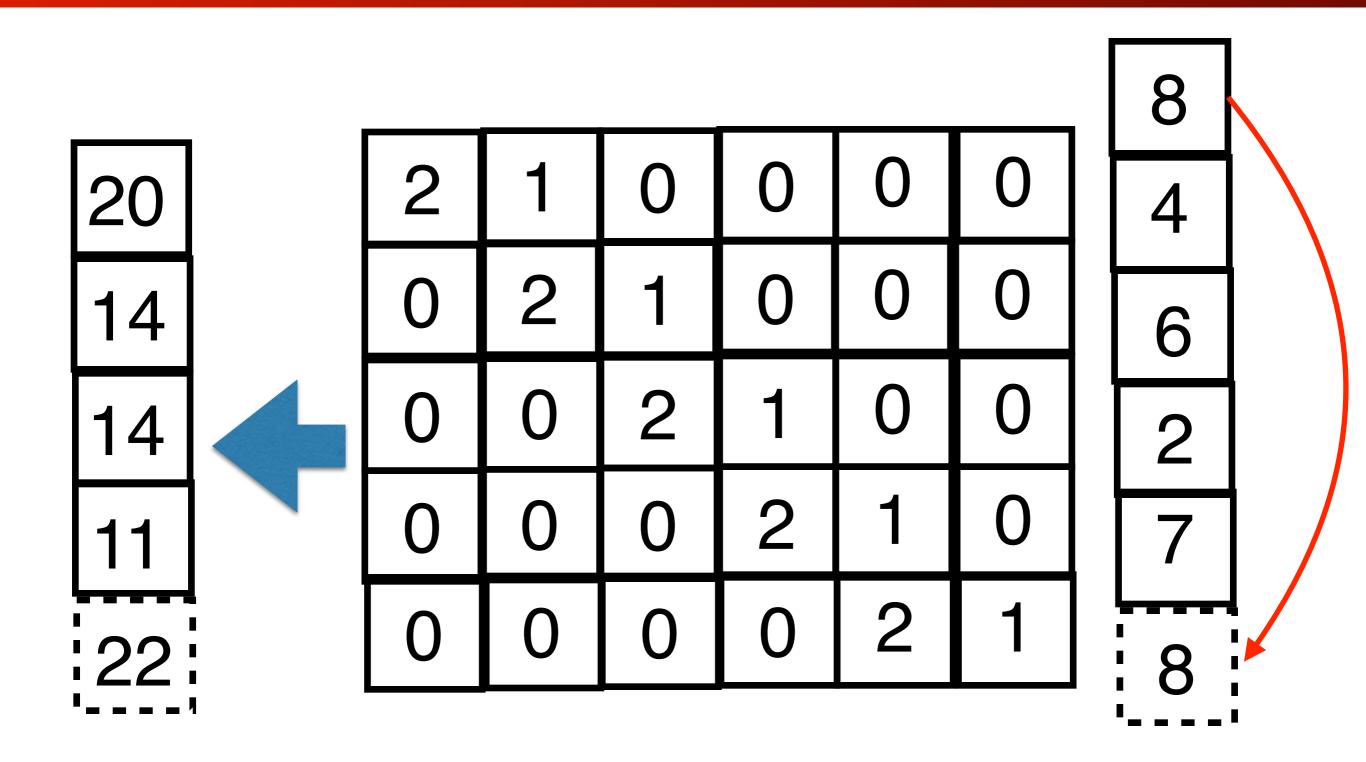
>> conv(x,h,'same')

Zero-Padded Convolution

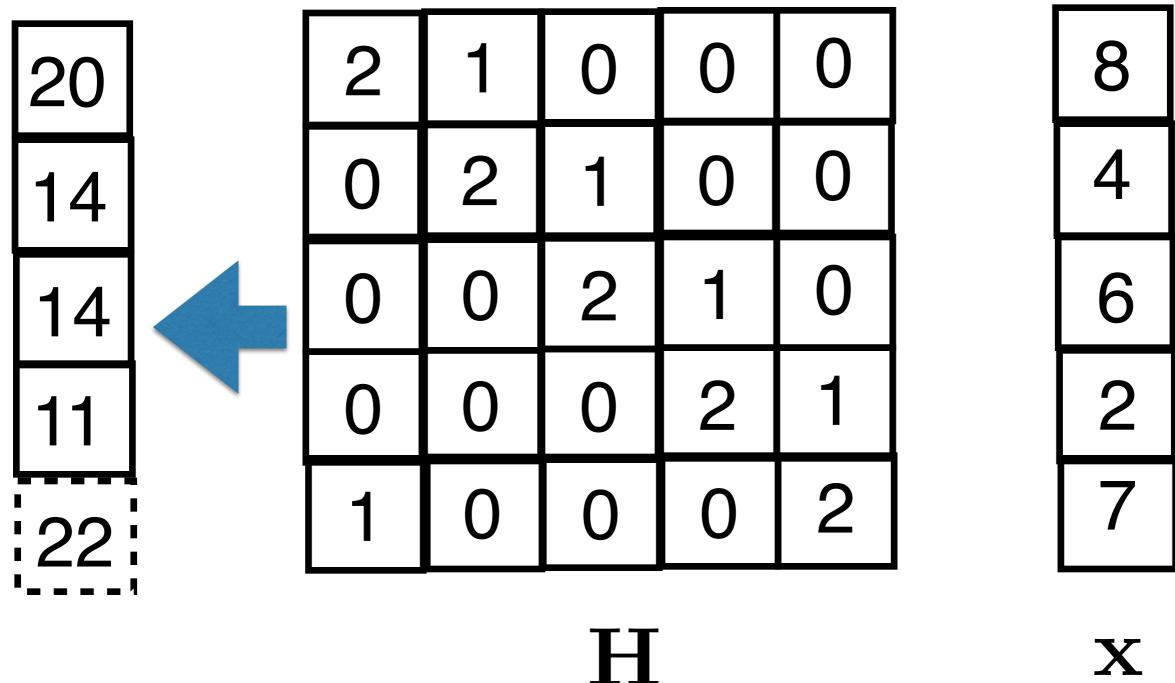


>> conv(x,h,'same')

Circular Convolution

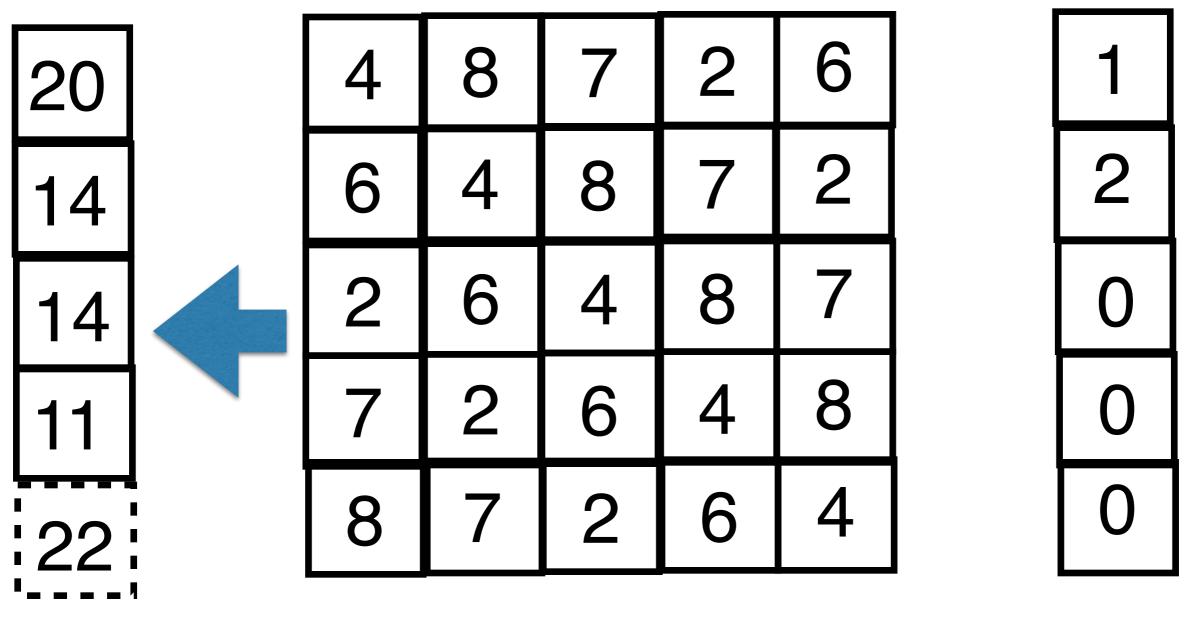


Circular Convolution



 \mathbf{X}

Circular Convolution

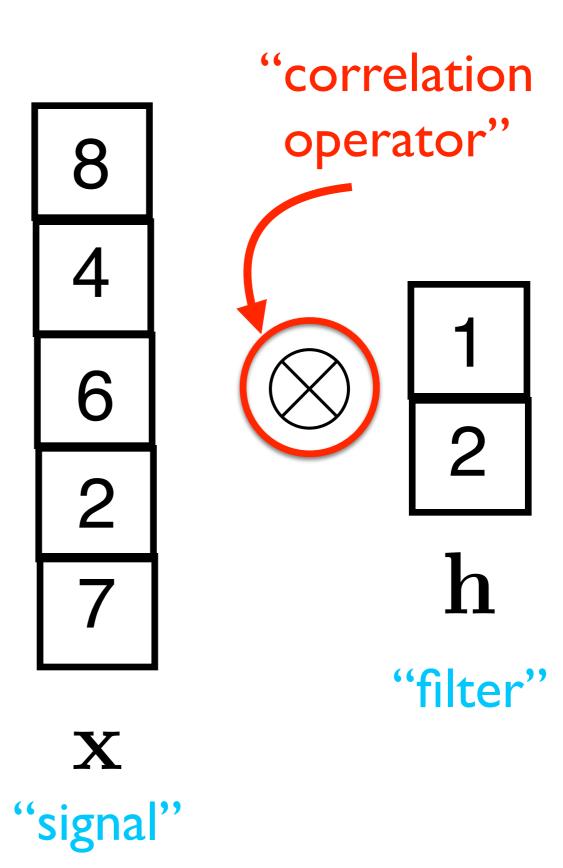


X

 \mathbf{h}

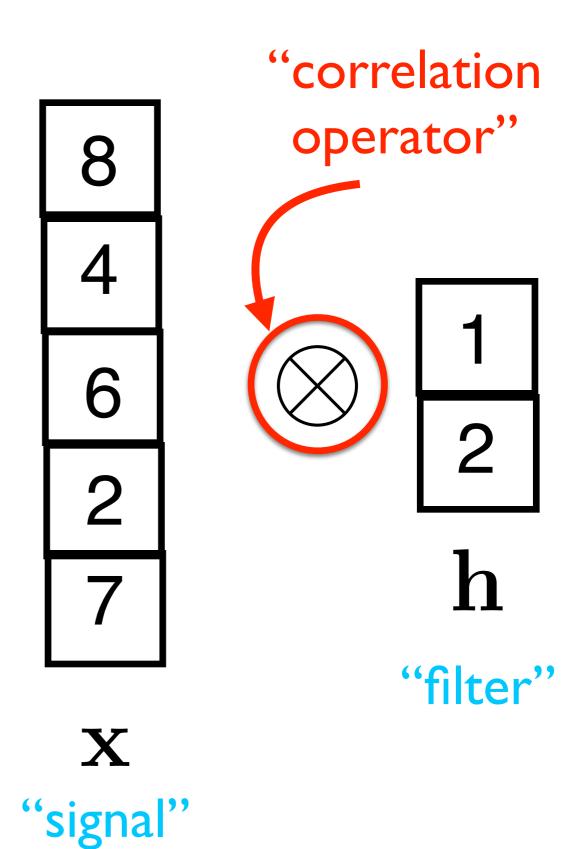
Correlation

>> conv(x,flipud(h),
...'same')
ans =

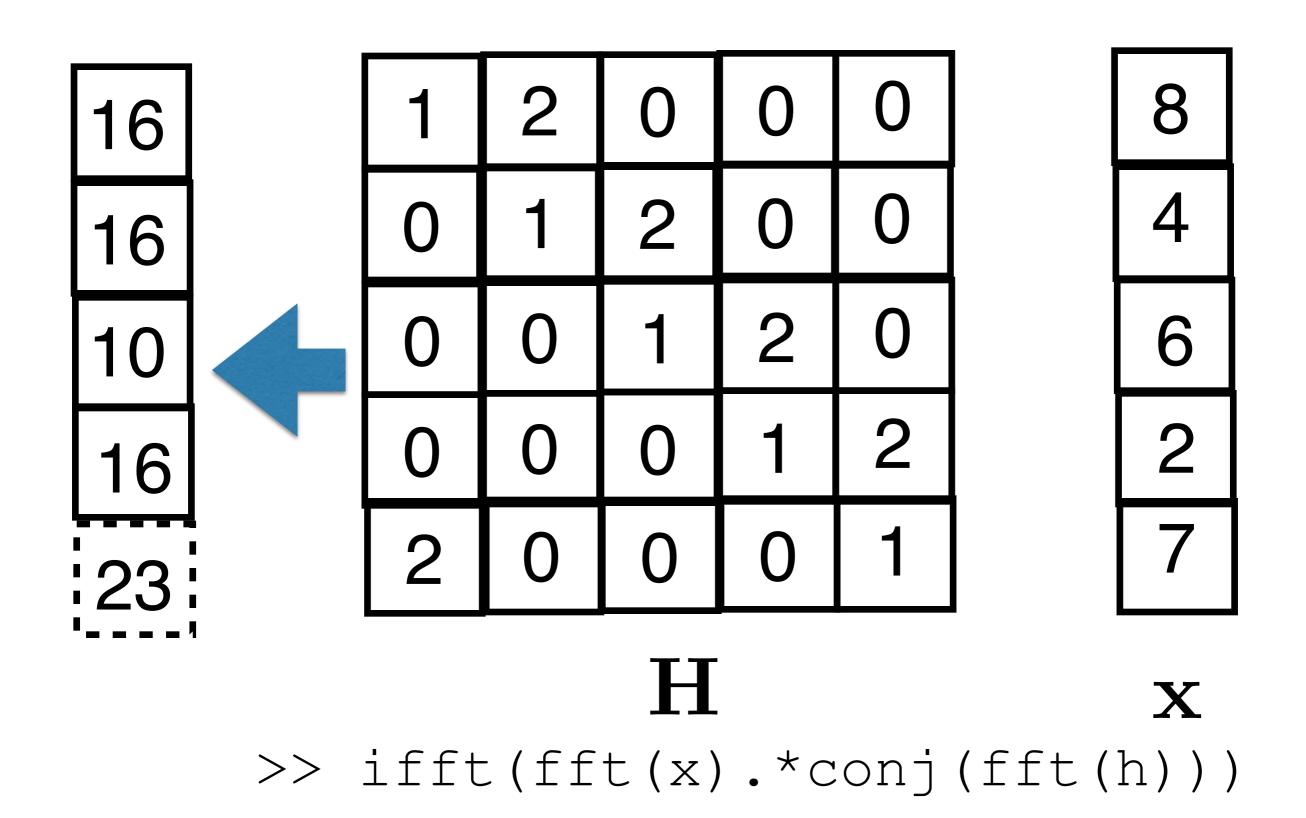


Correlation

>> imfilter(x,h)
ans =



Circular Correlation



Correlation vs. Convolution

Convolution is preferred mathematically as it is associative,

$$(\mathbf{x} * \mathbf{h}) * \mathbf{h} = \mathbf{x} * (\mathbf{h} * \mathbf{h})$$

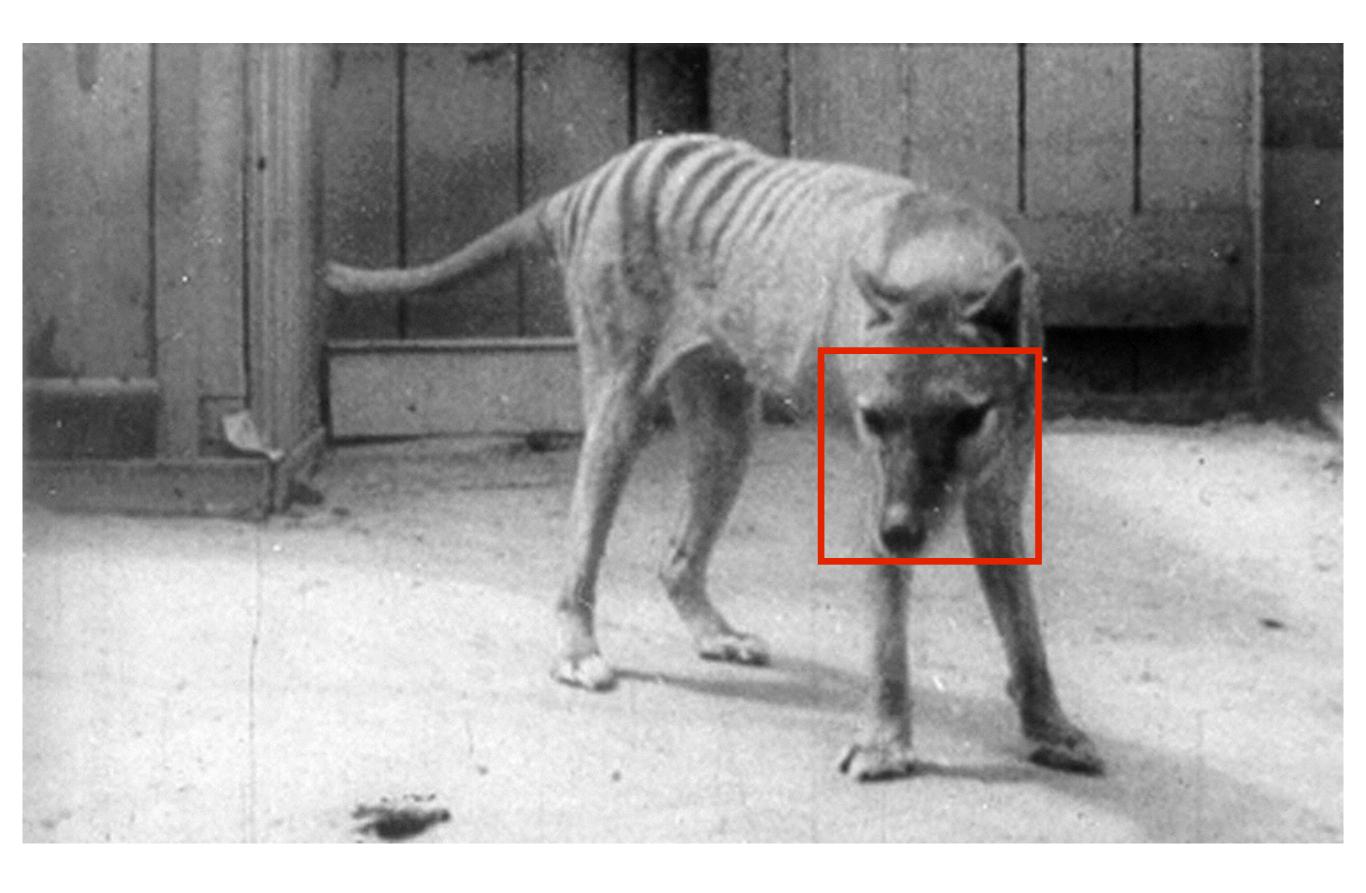
Correlation is not associative,

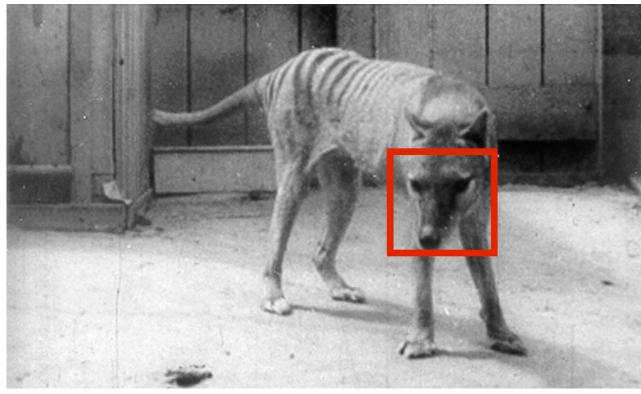
$$(\mathbf{x}\otimes\mathbf{h})\otimes\mathbf{h}\neq\mathbf{x}\otimes(\mathbf{h}\otimes\mathbf{h})$$

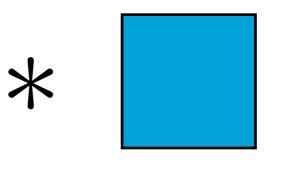
 Correlation preferred, however, for signal matching/ detection.

Today

- Types of Convolution
- Fast Fourier Transform (FFT)
- The Correlation Filter



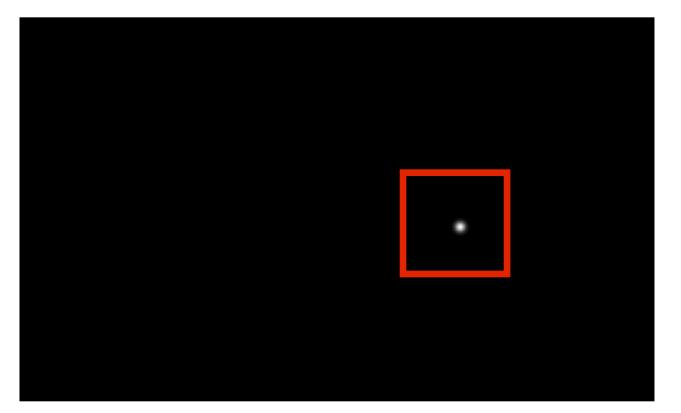




 \mathbf{h}

"unknown filter"

"known signal" X



"known response" **y**

 $\mathbf{x} \in \mathcal{R}^D$

 $\mathbf{x}[20, 20]$

>> xshift = circshift(x, [20, 20]);

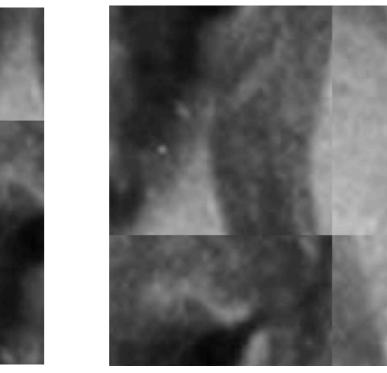
x[20, 20]

x[-20, -20]

>> xshift = circshift(x, [-20, -20]);

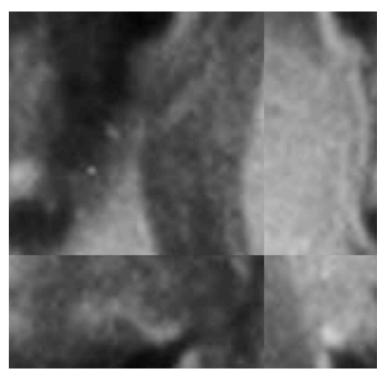


 $\mathbf{x}[20, 20]$



x[-100, -100]

x[-20, -20]

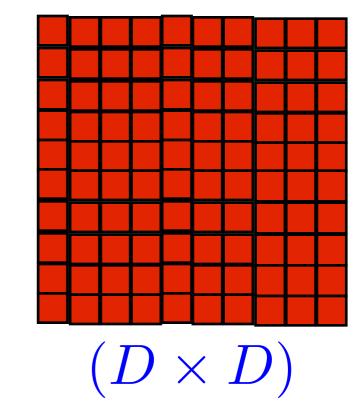


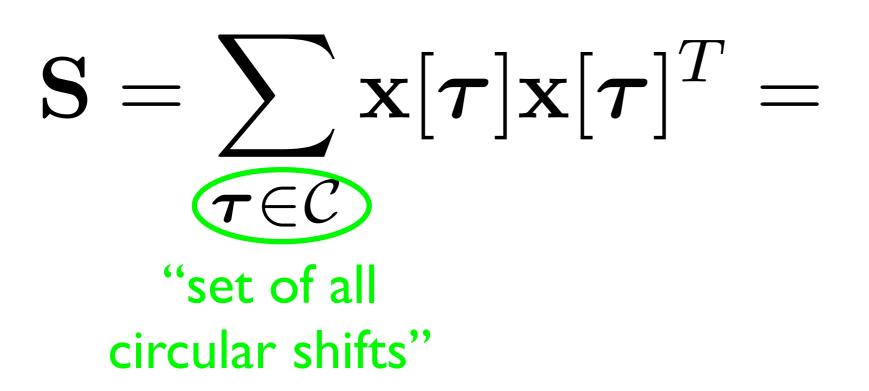
 $\mathbf{x}[200, 200]$

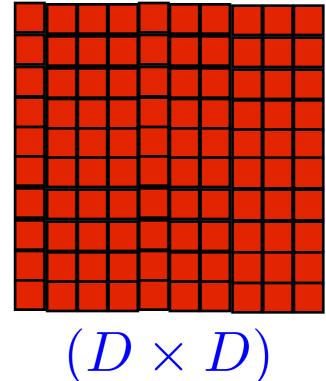


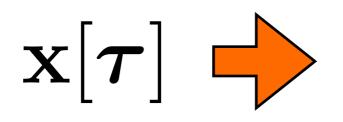
 $\mathbf{x}[100, 100]$

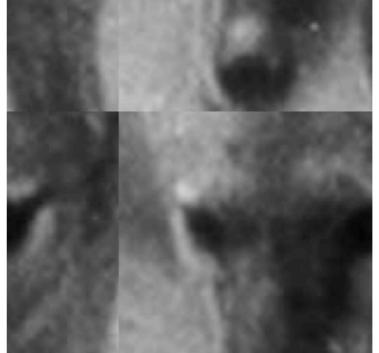
$\mathbf{S} = \sum_{oldsymbol{ au} \in \mathcal{C}} \mathbf{x}[oldsymbol{ au}] \mathbf{x}[oldsymbol{ au}]^T =$

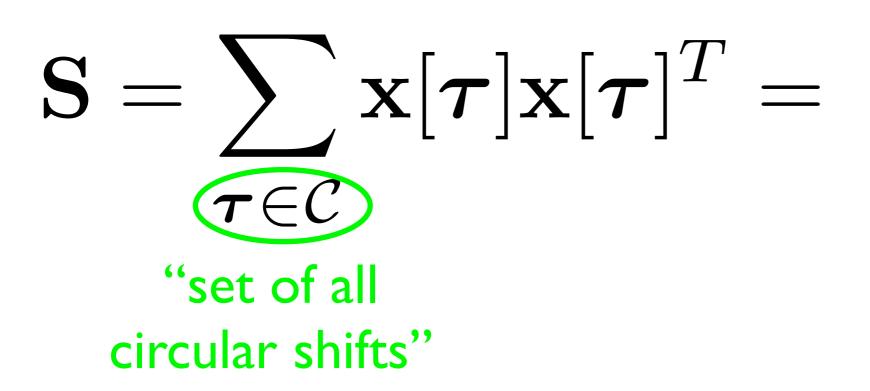


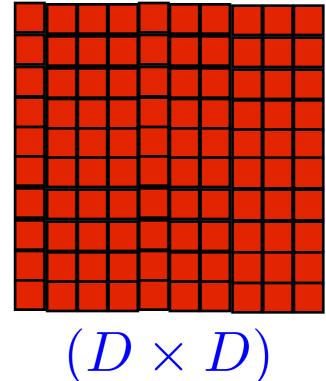


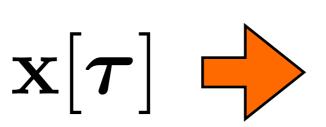


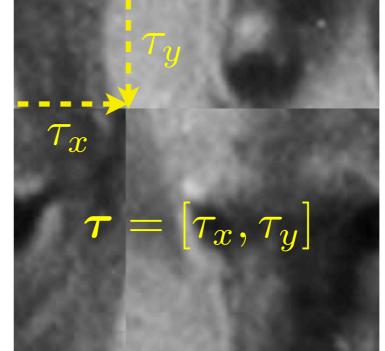


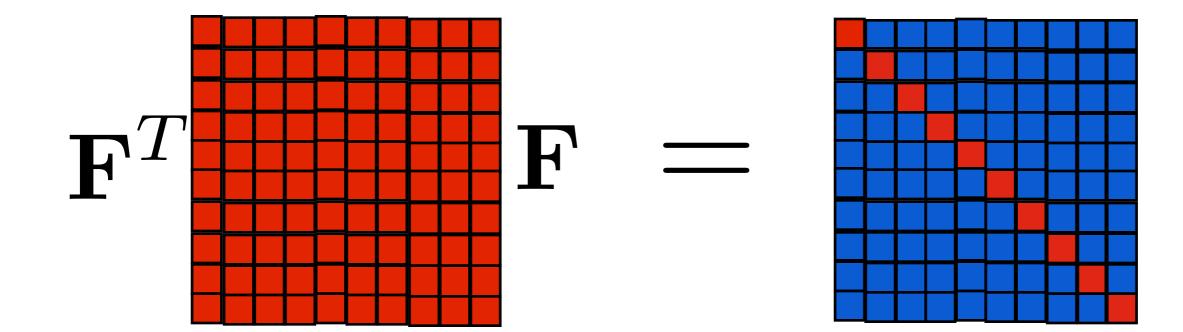




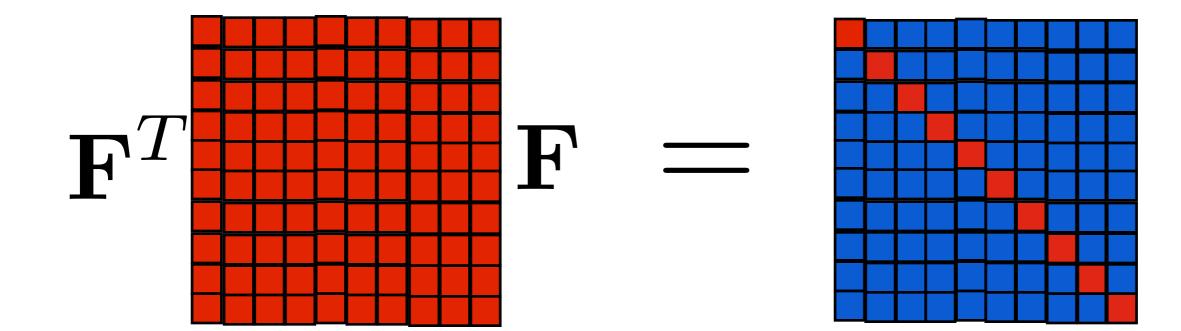




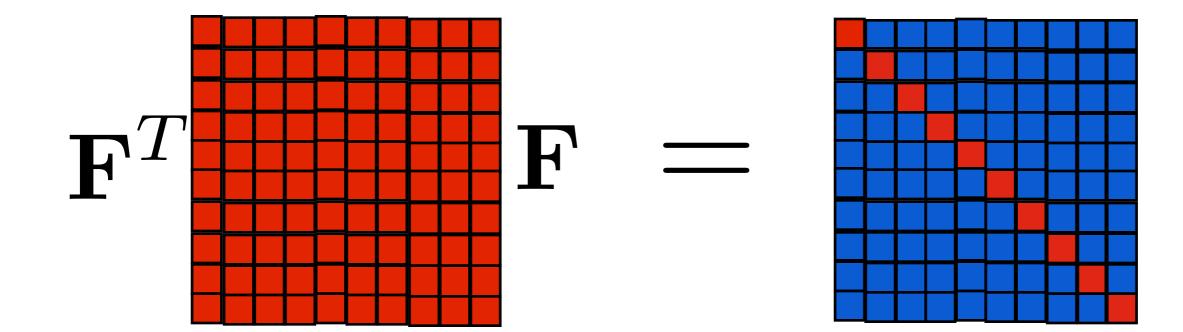




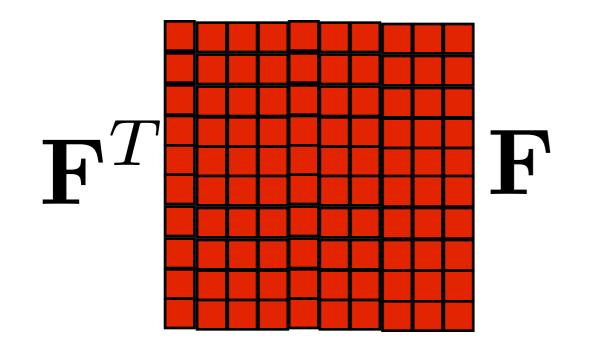
$\mathbf{F} \gets \text{eigenvectors of } \mathbf{S}$

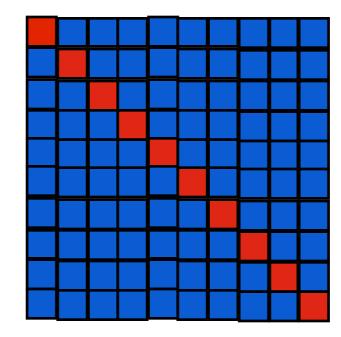


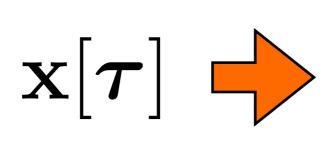
$\mathbf{F} \leftarrow \text{Fourier Transform}$

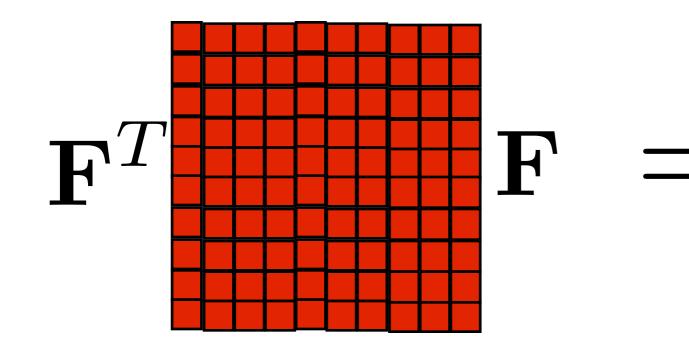


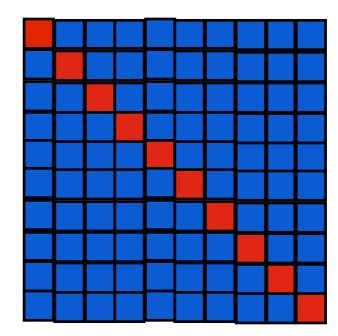
$\mathbf{F} \gets \text{eigenvectors of } \mathbf{S}$

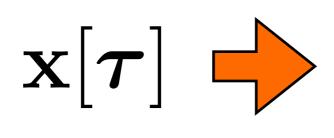


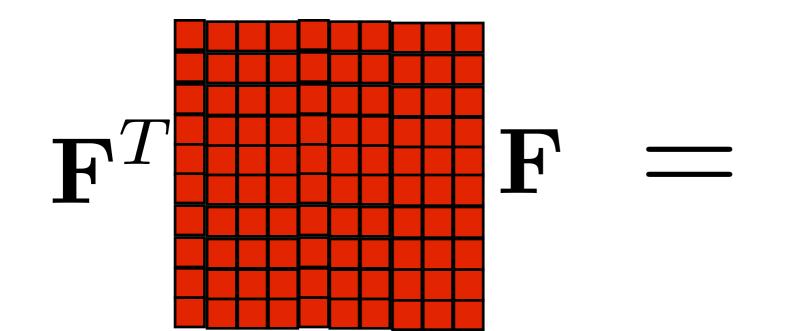




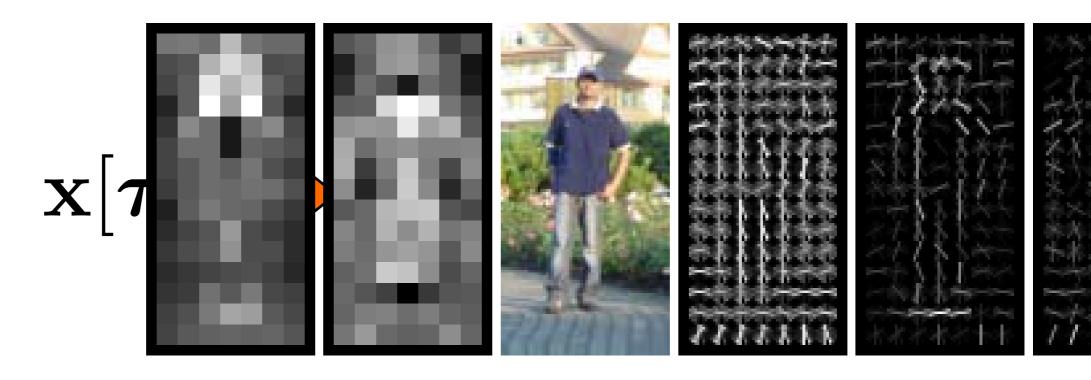


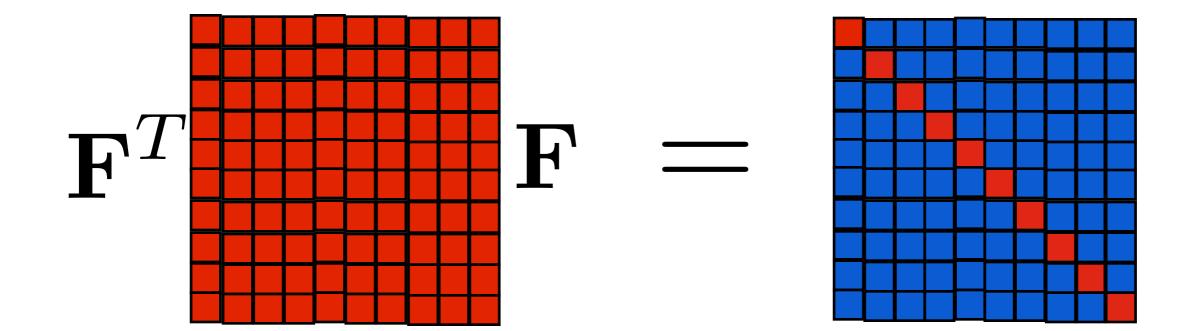






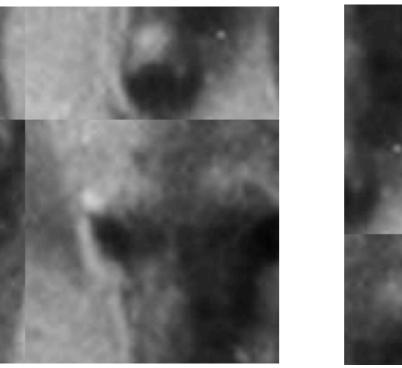
_	_	_	_	_	_	



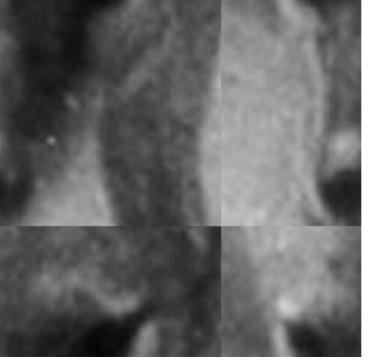


$\mathbf{F} \leftarrow \text{Fourier Transform}$

 $\mathbf{x}[20, 20]$

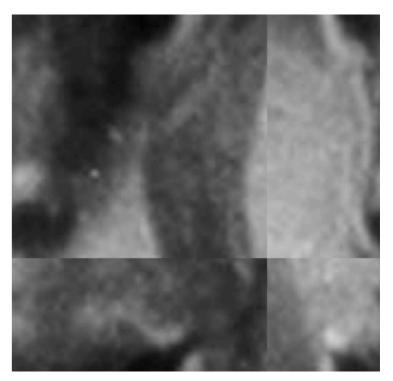


 $\mathbf{x}[100, 100]$



x[-100, -100]

x[-20, -20]



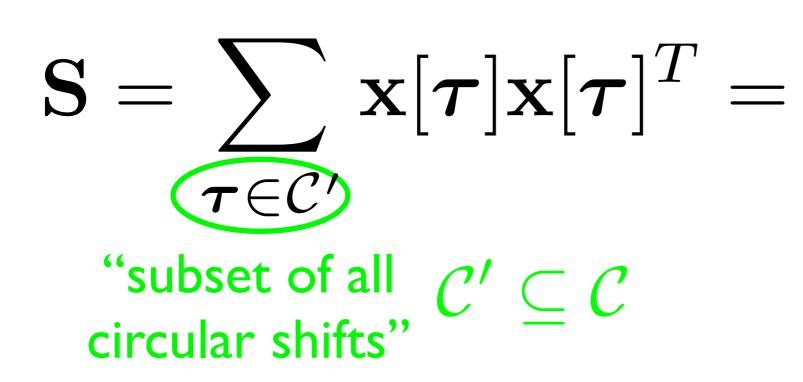
 $\mathbf{x}[200, 200]$

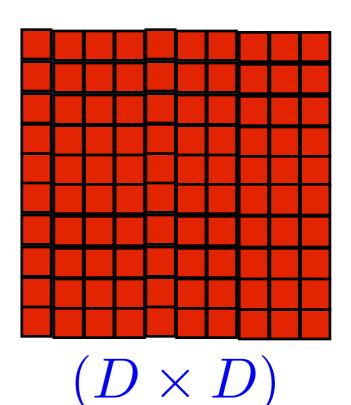
 $\mathbf{x}[20, 20]$

x[-20, -20]

x[20, 20]

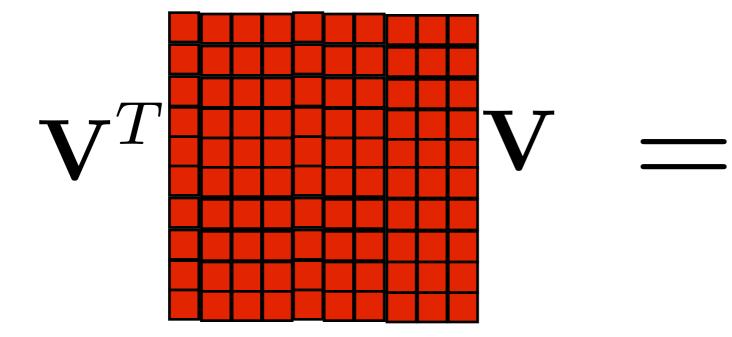
 $\mathbf{x}[-20, -20]$

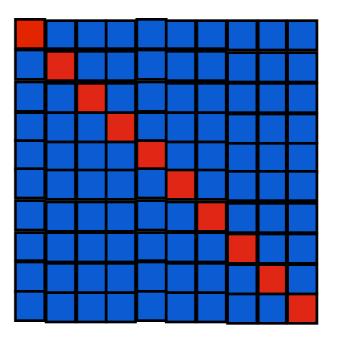




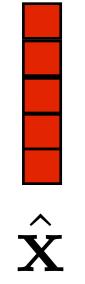
 $\mathbf{x}[20, 20]$

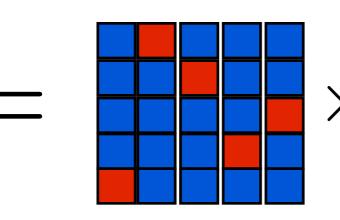
x[-20, -20]

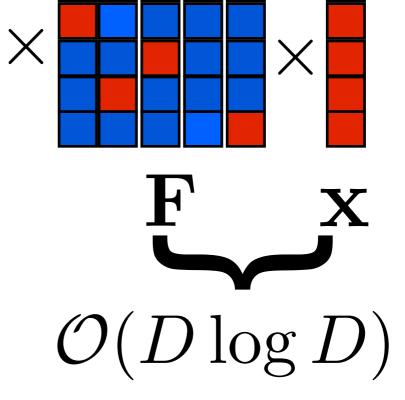




 $\mathbf{V}
eq \mathbf{F}$



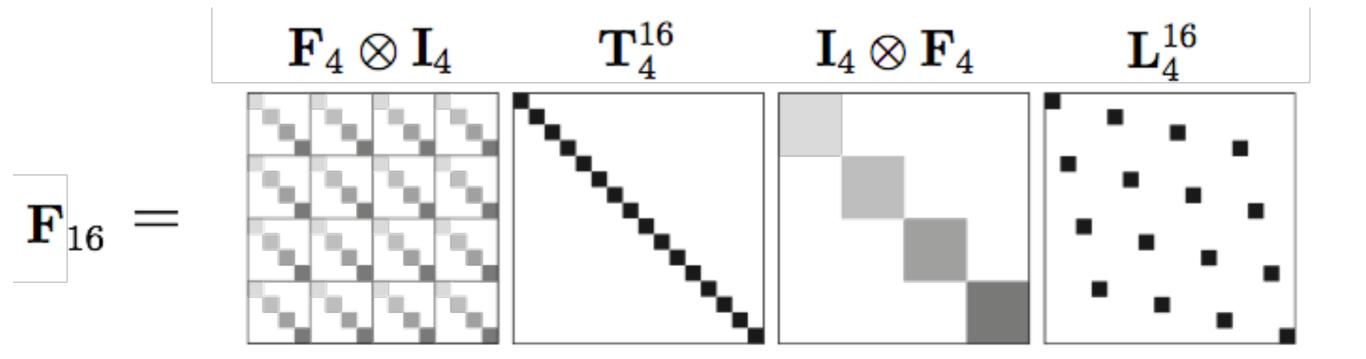




Carl Friedrich Gauss

Not Always Zero

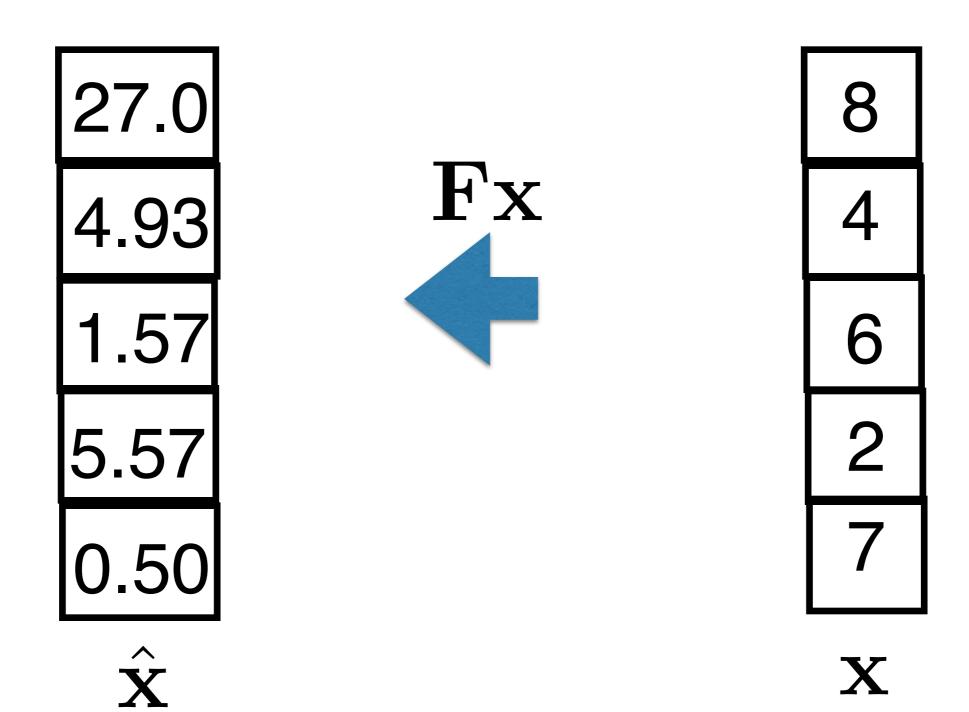
Always Zero



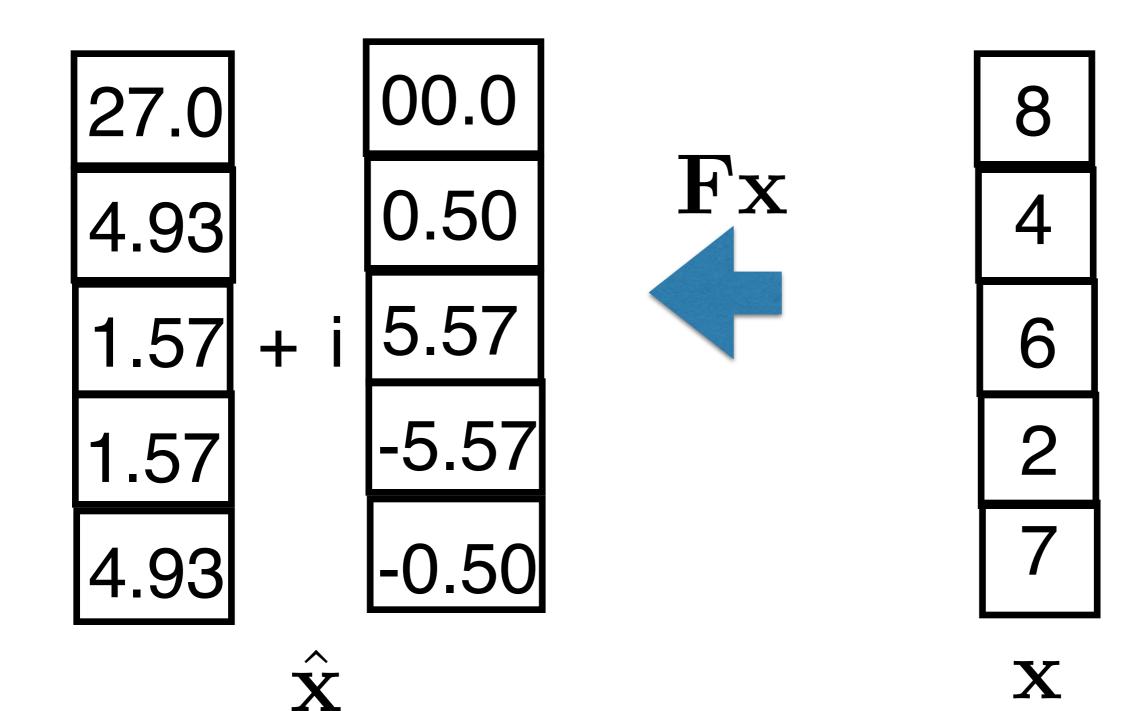
 $\mathbf{F}_{16} \rightarrow 16$ dimensional FFT $\mathbf{L}_{4}^{16} \rightarrow \text{permutation matrix} \quad \mathbf{T}_{4}^{16} \rightarrow \text{diagonal matrix}$

 $\mathbf{F}_4 \rightarrow 4$ dimensional FFT

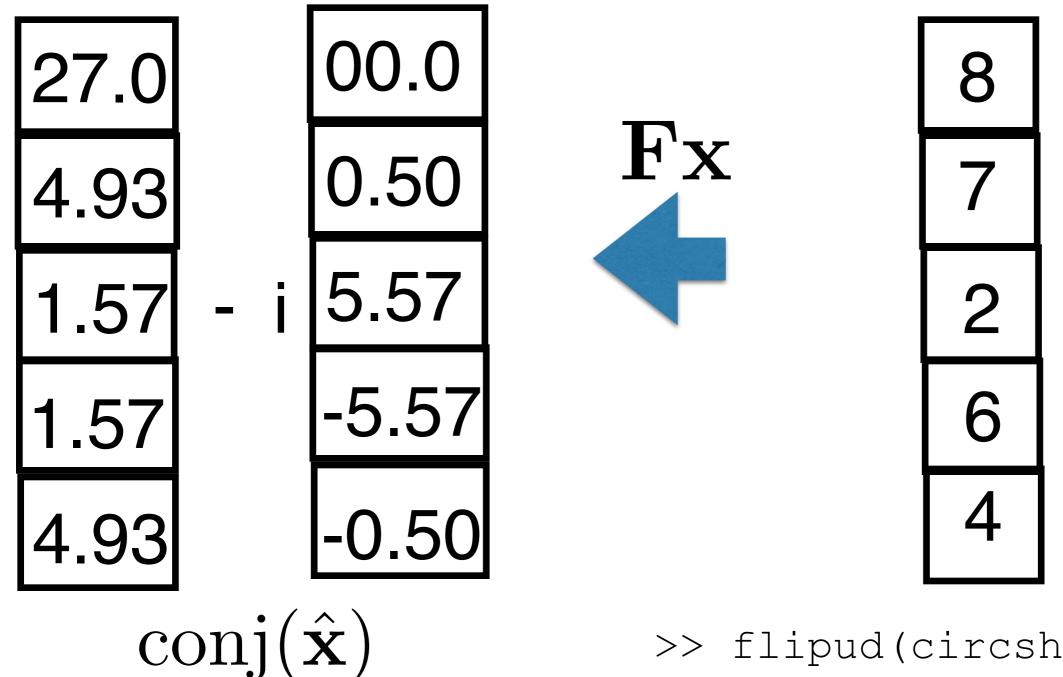
FFT can be Real



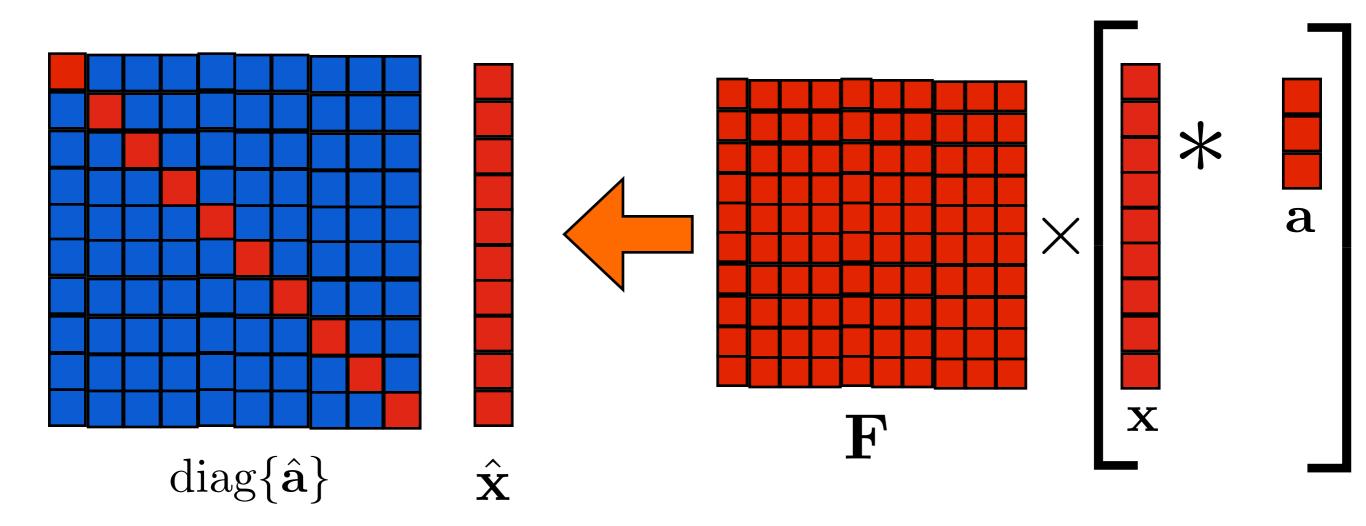
FFT can be Complex



FFT can be Complex

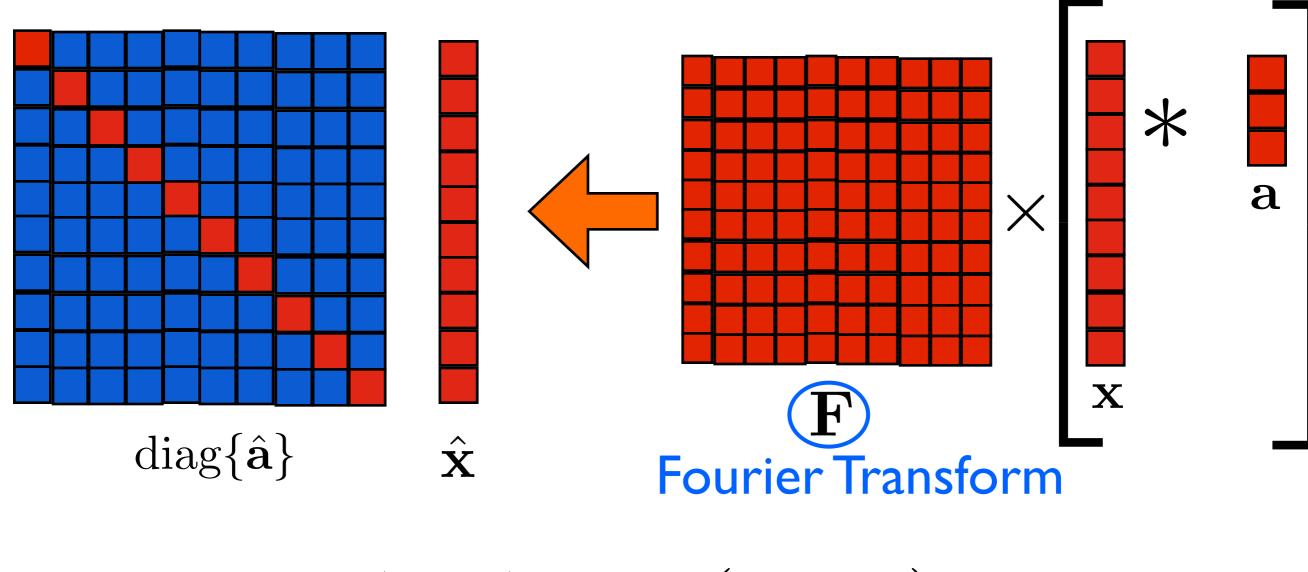


>> flipud(circshift(x,4))



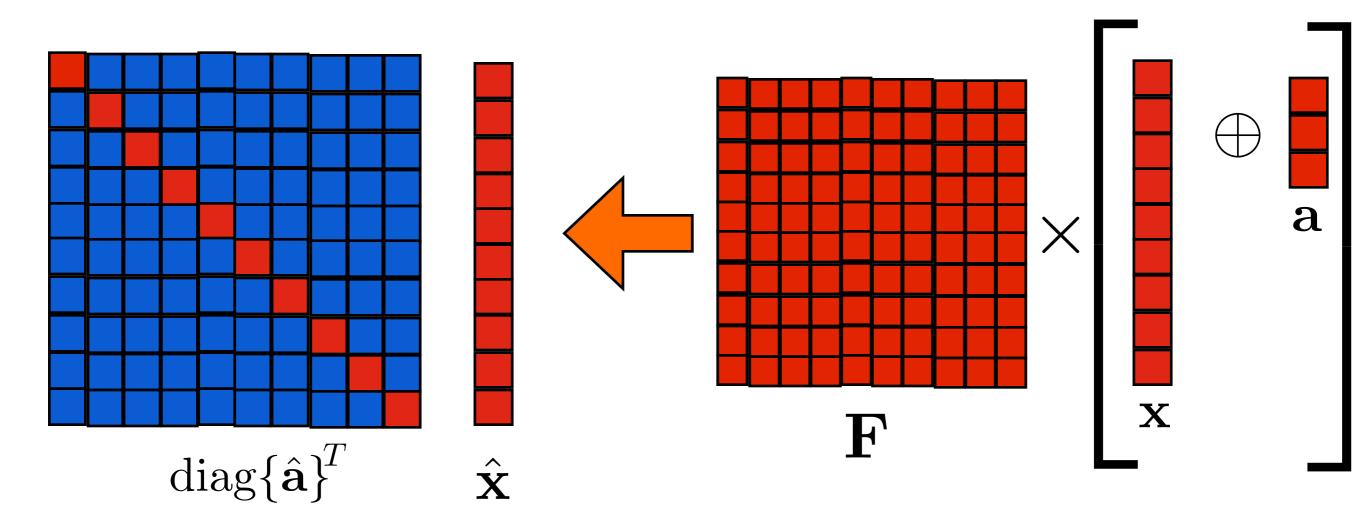
$\operatorname{diag}\{\hat{\mathbf{a}}\}\hat{\mathbf{x}} = \mathbf{F}(\mathbf{a} * \mathbf{x})$

Not Always Zero Always Zero



$$\hat{\mathbf{a}} \circ \hat{\mathbf{x}} = \mathbf{F}(\mathbf{a} * \mathbf{x})$$

Not Always Zero Always Zero

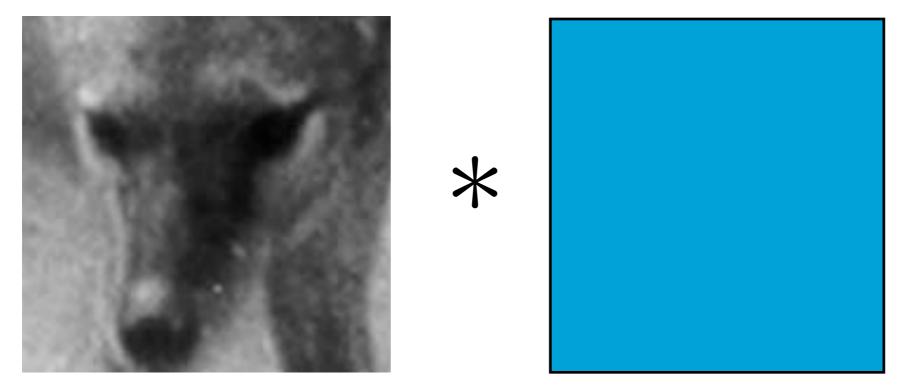


$\operatorname{conj}{\hat{\mathbf{a}}} \circ \hat{\mathbf{x}} = \mathbf{F}(\mathbf{x} \oplus \mathbf{a})$

Not Always Zero Always Zero

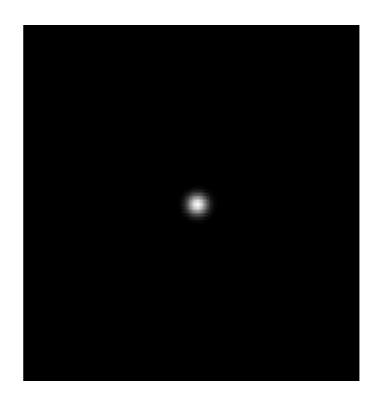
Today

- Types of Convolution
- Fast Fourier Transform (FFT)
- The Correlation Filter



"unknown filter" h

"known signal" X



"known response" **y**

 $E(\mathbf{h}) = \frac{1}{2} \sum_{\boldsymbol{\tau} \in \mathcal{C}} ||y_{\boldsymbol{\tau}} - \mathbf{x}[\boldsymbol{\tau}]^T \mathbf{h}||_2^2$

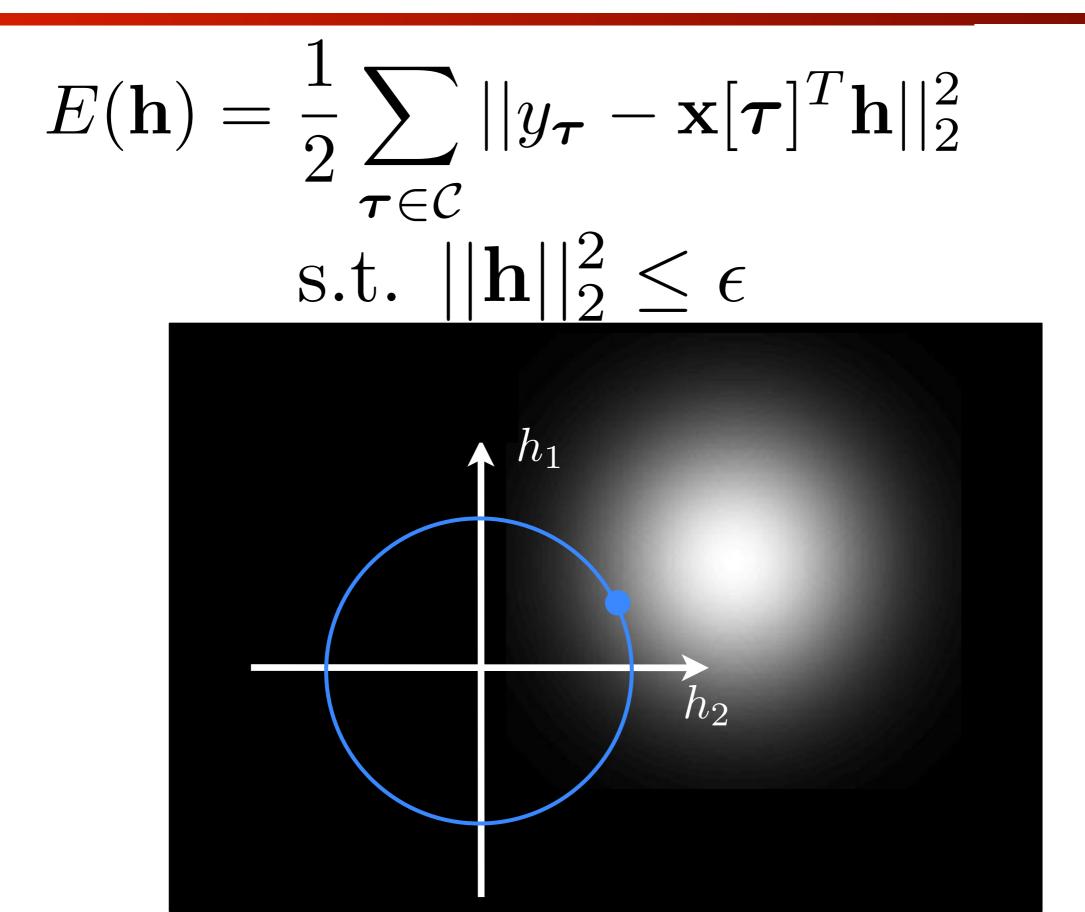
$\mathbf{x}[oldsymbol{ au}]$			• • •	
$y_{\boldsymbol{ au}}$	1	0	• • •	0

 $E(\mathbf{h}) = \frac{1}{2} \sum_{\boldsymbol{\tau} \in \mathcal{C}} ||y_{\boldsymbol{\tau}} - \mathbf{x}[\boldsymbol{\tau}]^T \mathbf{h}||_2^2 + \frac{\lambda}{2} ||\mathbf{h}||_2^2$

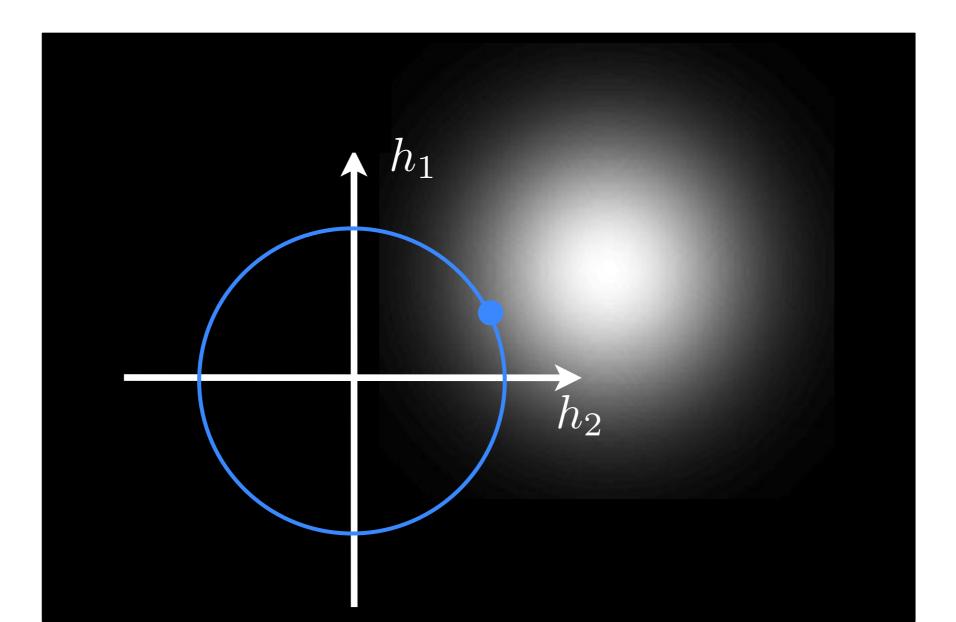
$\mathbf{x}[oldsymbol{ au}]$			• • •	
$y_{\boldsymbol{ au}}$	1	0	• • •	0

 $E(\mathbf{h}) = \frac{1}{2} \sum ||y_{\tau} - \mathbf{x}[\tau]^T \mathbf{h}||_2^2$ $au \in \mathcal{C}$ s.t. $||\mathbf{h}||_2^2 \leq \epsilon$

 $E(\mathbf{h}) = \frac{1}{2} \sum ||y_{\tau} - \mathbf{x}[\boldsymbol{\tau}]^T \mathbf{h}||_2^2$ $oldsymbol{ au} {\in} \mathcal{C}$ s.t. $||\mathbf{h}||_2^2 \leq \epsilon$ h_1 h_2

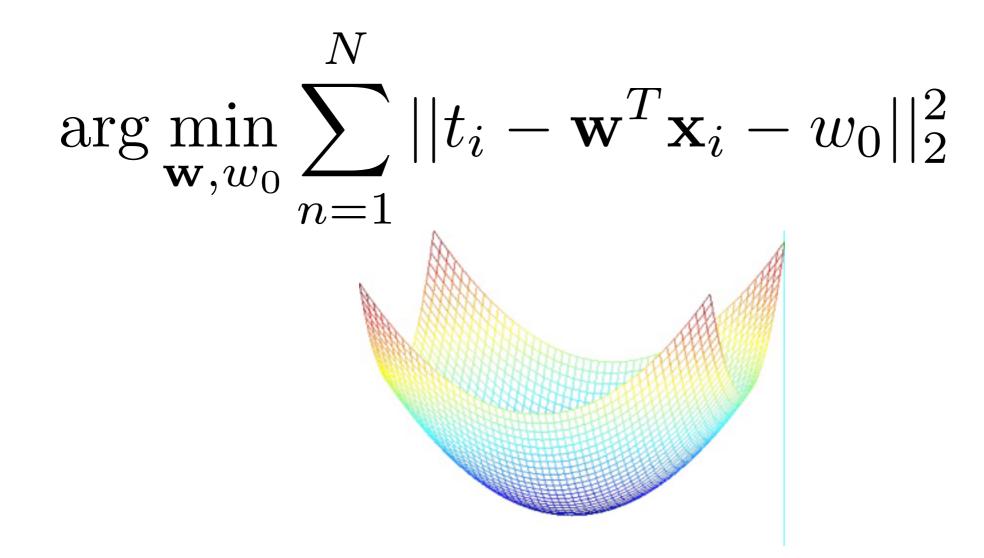


 $E(\mathbf{h}) = \frac{1}{2} \sum_{\boldsymbol{\tau} \in \mathcal{C}} ||y_{\boldsymbol{\tau}} - \mathbf{x}[\boldsymbol{\tau}]^T \mathbf{h}||_2^2 + \frac{\lambda}{2} ||\mathbf{h}||_2^2$



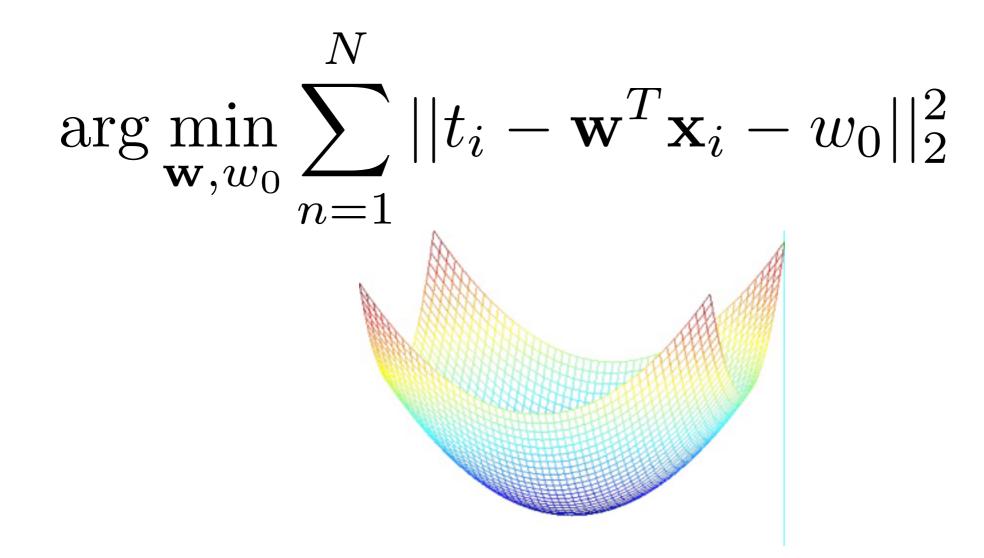
Linear Least Squares Discriminant

- One can view a correlation filter in the spatial domain as a linear least squares discriminant.
- Made popular by Bolme et al., referred to in literature as a MOSSE filter.

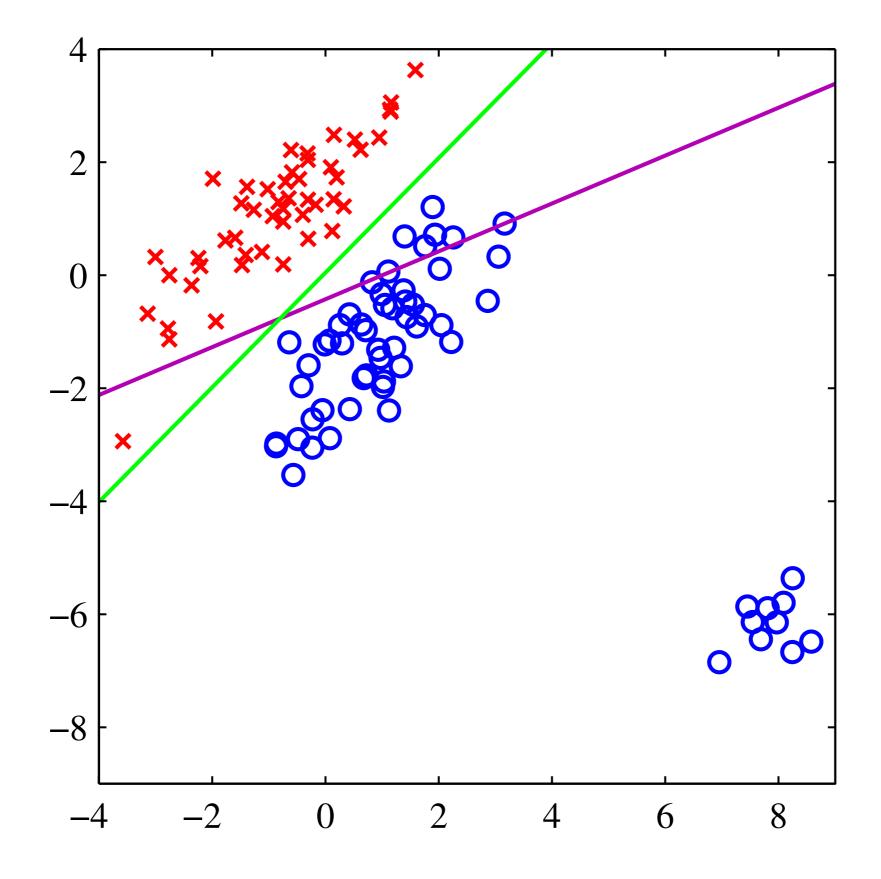


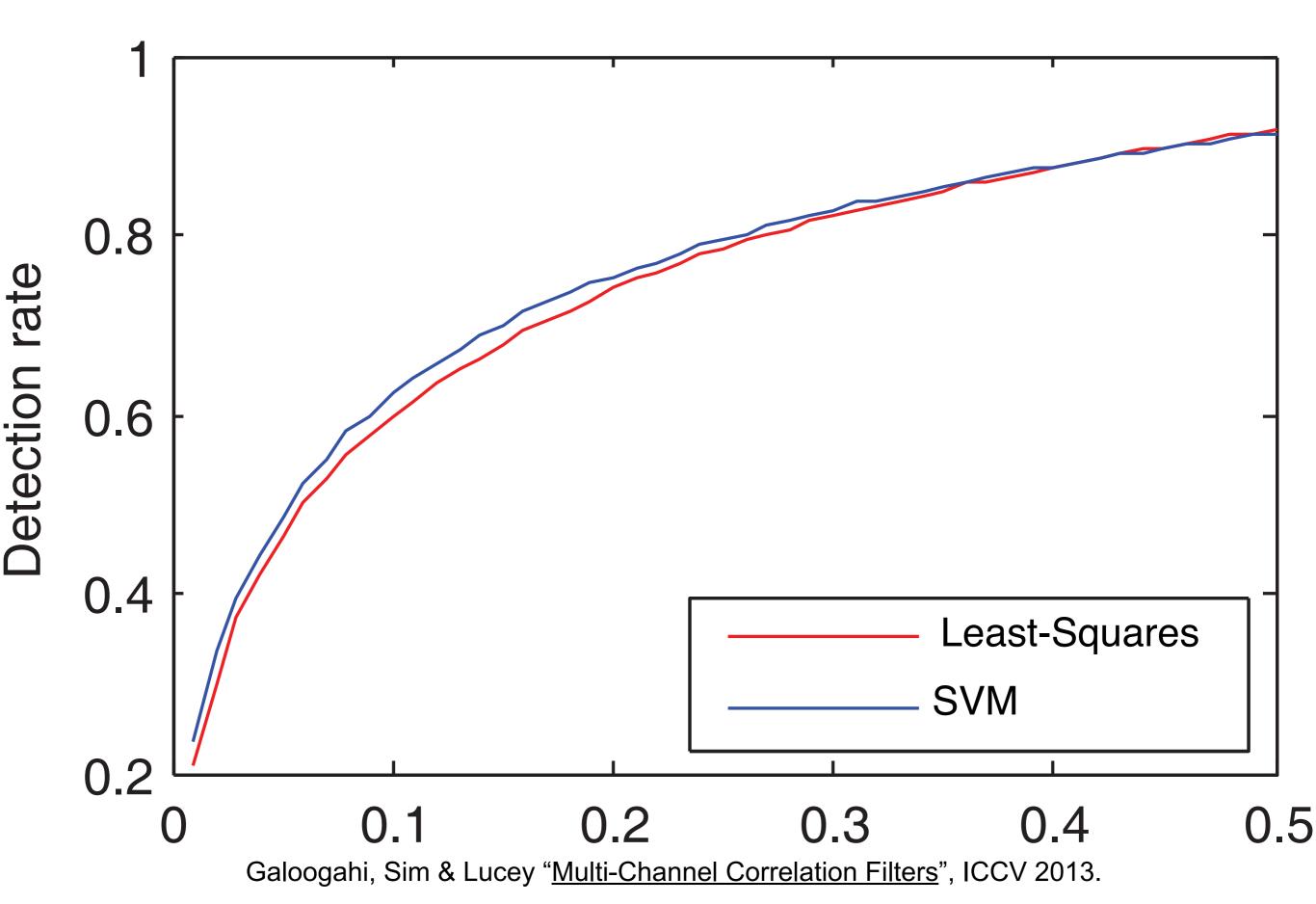
Linear Least Squares Discriminant

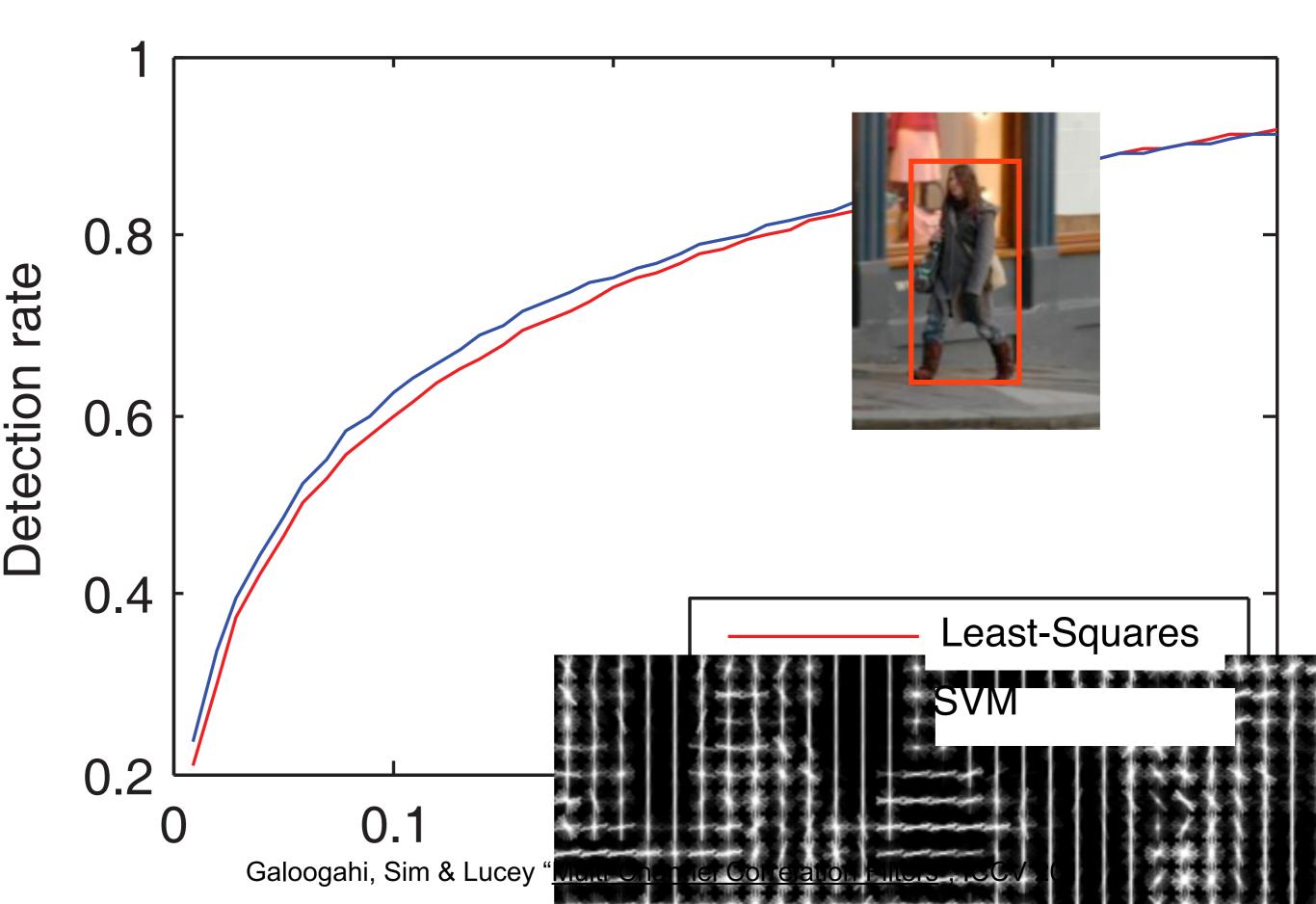
- One can view a correlation filter in the spatial domain as a linear least squares discriminant.
- Made popular by Bolme et al., referred to in literature as a MOSSE filter.



Linear Least Squares Discriminant

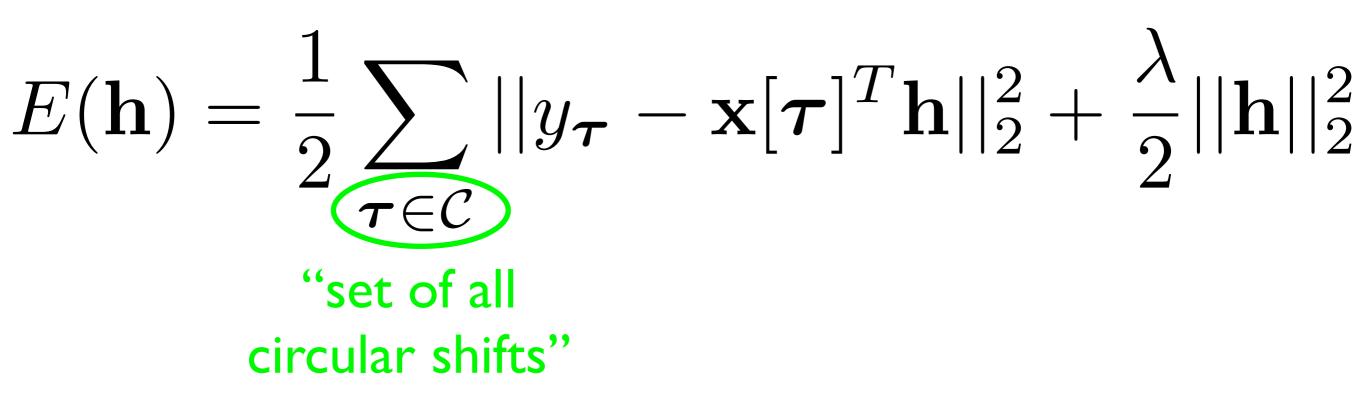


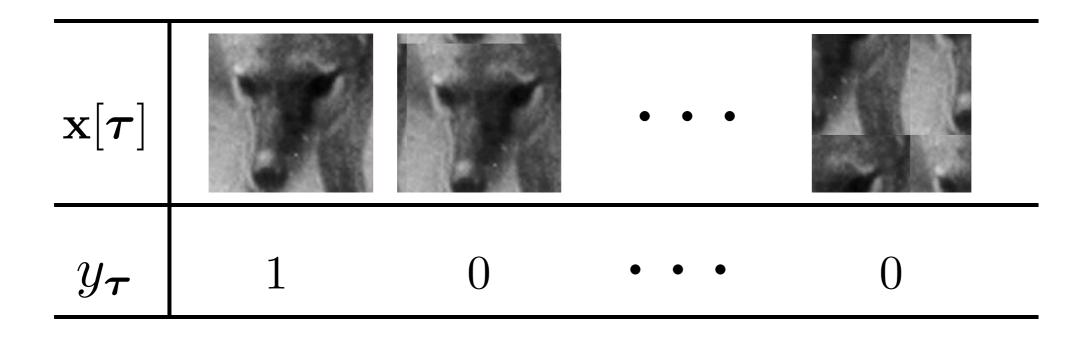




 $E(\mathbf{h}) = \frac{1}{2} \sum_{\boldsymbol{\tau} \in \mathcal{C}} ||y_{\boldsymbol{\tau}} - \mathbf{x}[\boldsymbol{\tau}]^T \mathbf{h}||_2^2 + \frac{\lambda}{2} ||\mathbf{h}||_2^2$

$\mathbf{x}[oldsymbol{ au}]$			• • •	
$y_{\boldsymbol{ au}}$	1	0	• • •	0





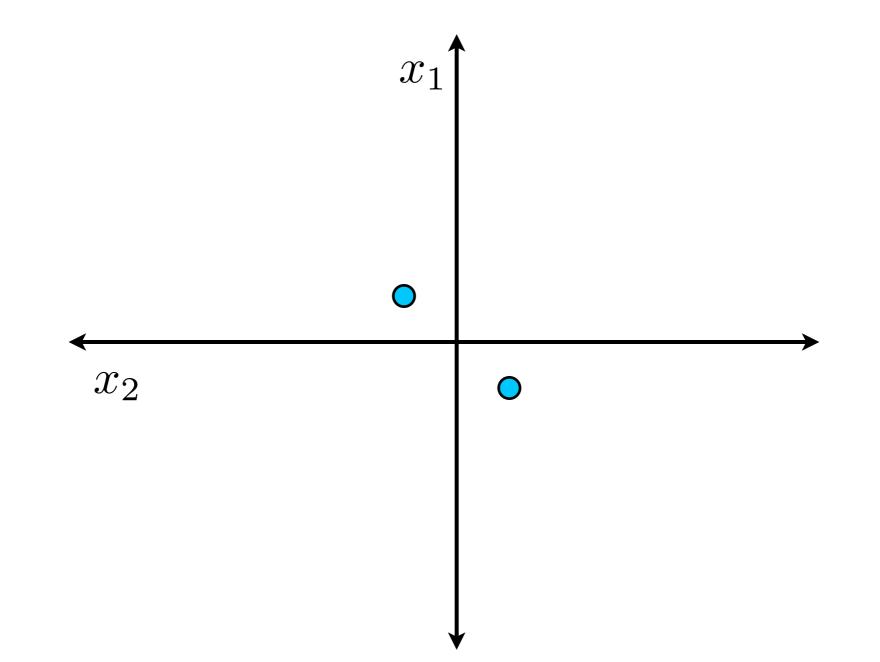
 $E(\mathbf{h}) = \frac{1}{2} ||\mathbf{y} - \mathbf{x} * \mathbf{h}||_{2}^{2} + \frac{\lambda}{2} ||\mathbf{h}||_{2}^{2}$

$\mathbf{x}[oldsymbol{ au}]$			• • •	
$y_{\boldsymbol{ au}}$	1	0	• • •	0

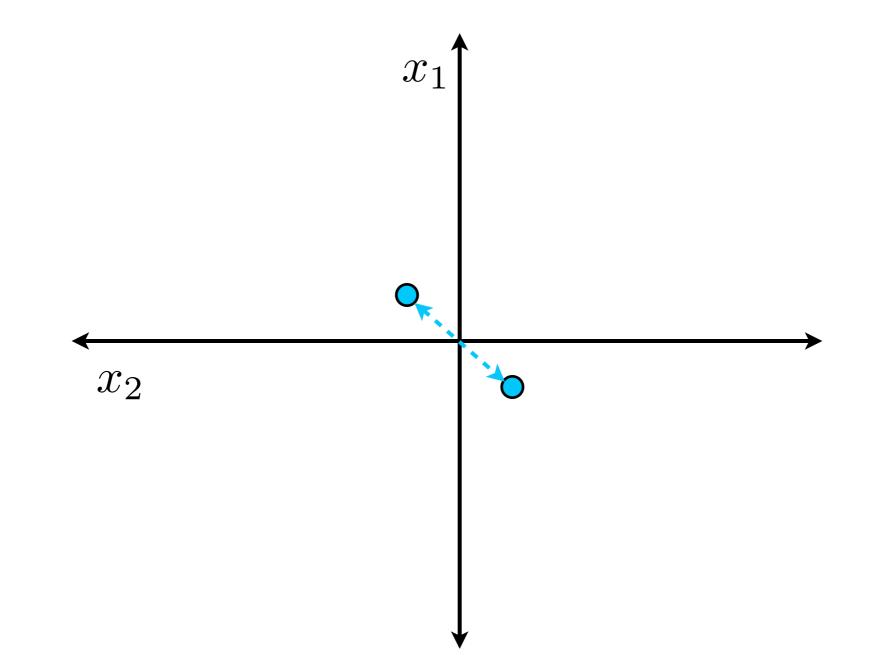
 $E(\mathbf{h}) = \frac{1}{2} ||\mathbf{y} - \mathbf{X}\mathbf{h}||_2^2 + \frac{\lambda}{2} ||\mathbf{h}||_2^2$

 $E(\mathbf{h}) = \frac{1}{2} ||\mathbf{y} - \mathbf{X}\mathbf{h}||_2^2 + \frac{\lambda}{2} ||\mathbf{h}||_2^2$ $(\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I})^{-1} \longrightarrow \mathcal{O}(D^3)$ D =number of samples in **x**

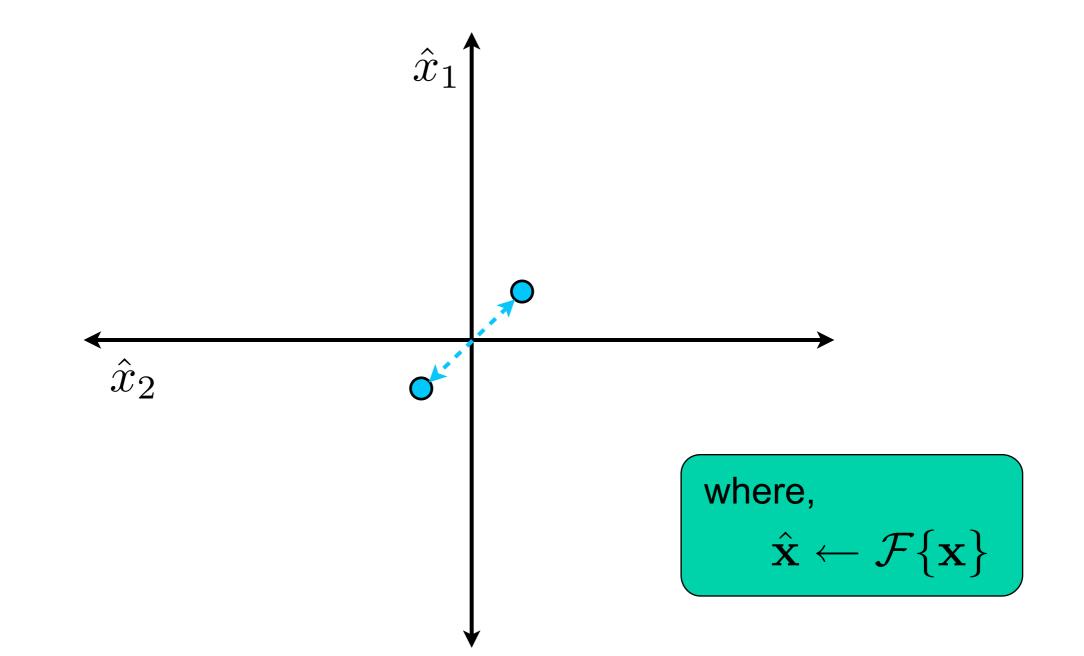
 $E(\mathbf{h}) = \frac{1}{2} ||\mathbf{y} - \mathbf{X}\mathbf{h}||_{2}^{2} + \frac{\lambda}{2} ||\mathbf{h}||_{2}^{2}$



 $E(\mathbf{h}) = \frac{1}{2} ||\mathbf{y} - \mathbf{X}\mathbf{h}||_2^2 + \frac{\lambda}{2} ||\mathbf{h}||_2^2$



 $E(\hat{\mathbf{h}}) = \frac{1}{2} ||\hat{\mathbf{y}} - \operatorname{diag}\{\hat{\mathbf{x}}\}\hat{\mathbf{h}}||_{2}^{2} + \frac{\lambda}{2} ||\hat{\mathbf{h}}||_{2}^{2}$



 $E(\hat{\mathbf{h}}) = \frac{1}{2} ||\hat{\mathbf{y}} - \operatorname{diag}\{\hat{\mathbf{x}}\}\hat{\mathbf{h}}||_{2}^{2} + \frac{\lambda}{2} ||\hat{\mathbf{h}}||_{2}^{2}$ $(\operatorname{diag}(\hat{\mathbf{x}})^T \operatorname{diag}(\hat{\mathbf{x}}) + \lambda \mathbf{I})^{-1}$ $\mathcal{O}(D \log D)$ D = number of samples in **x** \hat{x}_1 1 \hat{x}_2 where,

 $\hat{\mathbf{h}} = \hat{\mathbf{s}}_{xy} \circ^{-1} (\hat{\mathbf{s}}_{xx} + \lambda \mathbf{1})$

 $\hat{\mathbf{h}} = \hat{\mathbf{s}}_{xy} \circ^{-1} (\hat{\mathbf{s}}_{xx} + \lambda \mathbf{1})$

>> xf = fft2(x);

 $\hat{\mathbf{h}} = \hat{\mathbf{s}}_{xy} \circ^{-1} (\hat{\mathbf{s}}_{xx} + \lambda \mathbf{1})$

>> xf = fft2(x); >> yf = fft2(y);

 $\hat{\mathbf{h}} = \hat{\mathbf{s}}_{xy} \circ^{-1} (\hat{\mathbf{s}}_{xx} + \lambda \mathbf{1})$

>> xf = fft2(x);
>> yf = fft2(y);
>> sxx = xf.*conj(xf);

 $\hat{\mathbf{h}} = \hat{\mathbf{s}}_{xy} \circ^{-1} (\hat{\mathbf{s}}_{xx} + \lambda \mathbf{1})$

>> xf = fft2(x);
>> yf = fft2(y);
>> sxx = xf.*conj(xf);
>> sxy = xf.*conj(yf);

 $\hat{\mathbf{h}} = \hat{\mathbf{s}}_{xy} \circ^{-1} (\hat{\mathbf{s}}_{xx} + \lambda \mathbf{1})$

>> xf = fft2(x); >> yf = fft2(y); >> sxx = xf.*conj(xf); >> sxy = xf.*conj(yf); >> hf = sxy./(sxx + 1e-3);

Algorithm	Frame Rate	CPU
FragTrack[1]	realtime	Unknown
GBDL[19]	realtime	3.4 Ghz Pent. 4
IVT [17]	7.5fps	2.8Ghz CPU
MILTrack[2]	25 fps	Core 2 Quad
MOSSE Filters	669fps	2.4Ghz Core 2 Duo

Algorithm	Frame Rate	CPU
FragTrack[1]	realtime	Unknown
GBDL[19]	realtime	3.4 Ghz Pent. 4
IVT [17]	7.5fps	2.8Ghz CPU
MILTrack[2]	25 fps	Core 2 Quad
MOSSE Filters	669fps	2.4Ghz Core 2 Duo

$$\hat{\mathbf{h}} = \hat{\mathbf{s}}_{xy} \circ^{-1} \left(\hat{\mathbf{s}}_{xx} + \lambda \mathbf{1} \right)$$
$$\hat{\mathbf{s}}_{xx} = \sum_{i=1}^{N} \hat{\mathbf{x}}_i \circ \operatorname{conj}(\hat{\mathbf{x}}_i) \quad \& \quad \hat{\mathbf{s}}_{xy} = \sum_{i=1}^{N} \hat{\mathbf{y}}_i \circ \operatorname{conj}(\hat{\mathbf{x}}_i)$$

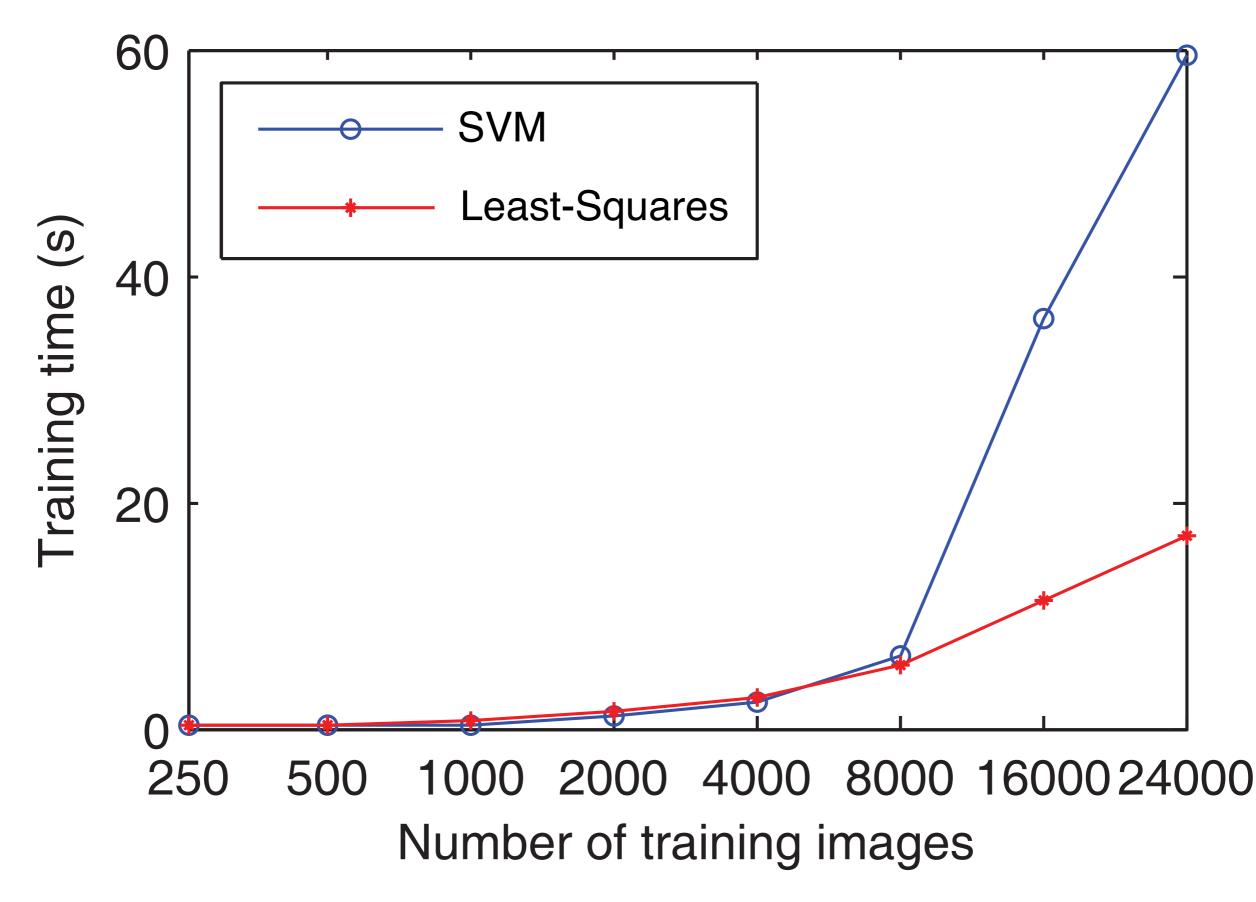
N = number of training images

memory efficiency $\leftarrow \mathcal{O}(D)$

$$\hat{\mathbf{h}} = \hat{\mathbf{s}}_{xy} \circ^{-1} \left(\hat{\mathbf{s}}_{xx} + \lambda \mathbf{1} \right)$$
$$\hat{\mathbf{s}}_{xx} = \sum_{i=1}^{N} \hat{\mathbf{x}}_i \circ \operatorname{conj}(\hat{\mathbf{x}}_i) \quad \& \quad \hat{\mathbf{s}}_{xy} = \sum_{i=1}^{N} \hat{\mathbf{y}}_i \circ \operatorname{conj}(\hat{\mathbf{x}}_i)$$

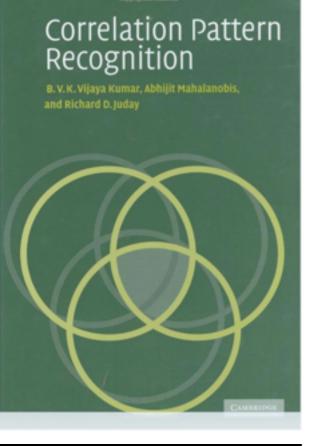
N = number of training images

memory efficiency $\leftarrow \mathcal{O}(D)$ SVM memory efficiency $\leftarrow \mathcal{O}(ND)$



Galoogahi, Sim & Lucey "Multi-Channel Correlation Filters", ICCV 2013.

More to read...



- Vijaya Kumar, Mahalanobis, & Juday "Correlation Pattern Recognition", 2010.
- Bolme, Beveridge, Draper & Lui, "<u>Visual Object Tracking</u> using Adaptive Correlation Filters", CVPR 2010.
- Galoogahi, Sim & Lucey "<u>Multi-Channel Correlation</u> <u>Filters</u>", ICCV 2013.

