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Types of Convolution

» More than just one type of convolutional
operator:-

* “Valid” convolution

>> conv (x,h,’valid’)
« “Same” convolution

>> conv (x,h, " same’)



Zero-Padded Convolution

>> conv(x,h,’same



Circular Convolution
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Correlation

>> conv (x, flipud(h),
.Tsame’ )
ans =
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Correlation

>> 1mfilter (x,h)
ans =
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Circular Correlation

xcony (£F£t (h)))

>> 1fft(fft(x).



Correlation vs. Convolution

» Convolution is preferred mathematically as it is associative,
(x*xh)*xh=xx%(hx*h)
* Correlation is not associative,

(x®h)®h+#x® (h®h)

» Correlation preferred, however, for signal matching/
detection.
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>> xshift = circshift(x, [20,20]);



>> xshift = circshift (x, [-20,-20]);
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Fs — 16 dimensional FFT

L;° — permutation matrix

F, — 4 dimensional FFT

T.° — diagonal matrix



FFT can be Real




FFT can be Complex




FFT can be Complex

>> flipud(circshift(x,4))




diag{a} X

diag{a}x = F(a * x)

B Not Always Zero [ Always Zero
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Fourier Transform

aox = F(ax*x)

B Not Always Zero [ Always Zero



diag{a} %

conj{a}l ox = F(x ® a)

B Not Always Zero [ Always Zero
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Trust Regions
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Linear Least Squares Discriminant

* One can view a correlation filter in the spatial domain as a
linear least squares discriminant.

» Made popular by Bolme et al., referred to in literature as a
MOSSE filter.
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Linear Least Squares Discriminant
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>> xf = fft2 (x);
>> yf = f£ft2(y);
>> sxx = xf.*conj (xf);
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Algorithm Frame Rate CPU
FragTrack[ ] realtime Unknown
GBDL[19] realtime 3.4 Ghz Pent. 4
IVT [17] 7.51ps 2.8Ghz CPU
MILTrack|[”] 25 1ps Core 2 Quad
MOSSE Filters 6691ps 2.4Ghz Core 2 Duo
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More to read...

Correlation Pattern
Recognition

* Vijaya Kumar, Mahalanobis, & Juday “Correlation Pattern
ecognition”, 2010.

- Bolme, Beveridge, Draper & Lui, “Visual Object Tracking
using Adaptive Correlation Filters™, CVPR 2010.

« Galoogahi, Sim & Lucey “Multi-Channel Correlation
Filters”, ICCV 2013.

This ICCV2013 paper is the Open

provided by the Computer
is available in IEEE Xpl
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Abstract

Modern descriptors like HOG and SIFT are now com-
monly used in vision for pattern detection within im-
age and video. From a signal processing perspective,
this detection process can be efficiently posed as a cor-
between a image and
a multi-channel detector/filier which results in a single-
channel response map indicating where the pattern (e.g
object) has occurred. In this paper, we propose a novel
Sramework for learning a multi-channel detector/filter ef-
Jiciently in the frequency domain, both in terms of training
time and memory footprint, which we refer 1o as a multi-
channel correlation filter: To demonsirate the effectiveness
of our strategy, we evaluate it across a number of visual de-
ion tasks where we: (i) exhibit superior per-
formance to current state of the art correlation filters, and
(ii) superior computational and memory efficiencies com-
pared to state of the art spatial detectors.

1. Introduction

In computer vision it is now rare for tasks like convo-
lution/correlation to be performed on single channel image
signals (e.g. 2D array of intensity values). With the advent
of advanced descriptors like HOG [5] and SIFT [13] convo-
lution/correlation across multi-channel signals has become
the norm rather than the exception in most visual detection
tasks. Most of these image descriptors can be viewed as

lti-channel ignals with multiple
(such the oriented edge energies) associated with each pixel
location. We shall herein refer to all image descriptors as
multi-channel images. An example of multi-channel corre-
lation can be seen in Figure | where a multi-channel image
is with a multi 1
in order to obtain a single-channel response. The peak of
the response (in white) indicating where the pattern of in-
terest s located.

Like single channel signals, correlation between two
multi-channel signals is rarely performed naively in the spa-

tsim@comp.nus.edu.sg

simon. lucey@esiro.au

x y

Figure 1. An example of multi-channel correlation/convolution
where one has a multi-channel image x correlated/convolved with
a multi-channel filter h to give a single-channel response y. By
ing this objective in the frequency domain, our multi-channel
filter approach attempts o give a computational &
memory efficient strategy for estimating h given x and y.

tial domain. Instead, the fast Fourier transform (FFT) af-
fords the efficient application of correlating a desired tem-
plate/filter with a signal. Contrastingly, however, most tech-
niques for estimating a detector for such a purpose (i.e. de-
tection/tracking through convolution) are performed in the
spatial domain [5]. It i this dilemma that is at the heart of
our paper.

This has not always been the case. Correlation fil-
ters, developed initially in the seminal work of Hester and
Casasent [8], are a method for leaming a template/filter
in the frequency domain that rose to some prominence in
the 80s and 905. Although many variants have been pro-
posed [8, 11, 12], the approach’s central tenet is to leamn
a filter, that when correlated with a set of training s
nals, gives a desired response (typically a peak at the origin
of the object, with all other regions of the correlation re-
sponse map being suppressed). Like correlation itself, one
of the central advantages of the single channel approach is
that it attempts to learn the filter in the frequency domain
due to the efficiency of correlation/convolution in that do-
main. Learning multi-channel filters in the frequency do-
main, however, comes at the high cost of computation and
memory usage. In this paper we present an efficient strategy
for learning multi-channel signals/filters that has numerous
applications throughout vision and learning.
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Abstract

Although not commonly used, correlation filters can track
complex objects through rotations, occlusions and other
distractions at over 20 times the rate of current state-of-
the-art techniques. The oldest and simplest correlation
filters use simple templates and generally fail when ap-
plied to tracking. More modern approaches such as ASEF
and UMACE perform better, but their training needs are
poorly suited to tracking. Visual tracking requires robust
fillters to be trained from a single frame and dynamically
adapted as the appearance of the target object changes.

‘This paper presents a new type of correlation filter, a
Minimum Output Sum of Squared Error (MOSSE) filter,
which produces stable correlation filters when initialized
using a single frame. A tracker based upon MOSSE fil-
ters is robust to variations in lighting, scale, pose, and
d deformations while operating at 669 frames per
second. Ocelusion is detected based upon the peak-to-
sidelobe ratio, which enables the tracker to pause and re-
sume where it left off when the object reappears.

Note: This paper contains additional figures and con-
tent that was excluded from CVPR 2010 to meet lengih
requirements.

1 Introduction

Visual tracking has many practical applications in video
processing. When a target is located in one frame of
a video, it is often useful to track that object in subse-
quent frames. Every frame in which the target is success-
fully tracked provides more information about the identity
and the activity of the target. Because tracking is casier
than detection, tracking algorithms can use fewer compu-
tational resources than running an object detector on every
frame.

Visual tracking has received much attention in recent

Figure 1: This figure shows the results of the MOSSE filter
based tracker on a challenging video sequence. This tracker has
the ability to quickly adapt to scale and rotation changes. It is
also capable of detecting tracking failure and recovering from
occlusion.

years. A number of robust tracking strategies have been
proposed that tolerate changes in target appearance and
track targets through complex motions. Recent examples.
include: Incremental Visual Tracking (IVT) [17], Robust
Fragments-based Tracking (FragTrack) [1]. Graph Based
Discriminative Learning (GBDL) [19), and Multiple In-
stance Learning (MILTrack) [2]. Although effective,
these techniques are not simple; they often include com-
plex appearance models and/or optimization algorithms,
and as result struggle to keep up with the 25 to 30 frames
per second produced by many modern cameras (See Ta-
ble 1)

In this paper we investigate a simpler tracking strategy.
The targets appearance is modeled by adaptive correlation
filters, and tracking is performed via convolution. Naive



http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.294.4992&rep=rep1&type=pdf
http://www.apple.com

