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Today

• Types of Convolution 

• Fast Fourier Transform (FFT) 

• The Correlation Filter
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Types of Convolution

• More than just one type of convolutional 

operator:- 

• “Valid” convolution 
     >> conv(x,h,’valid’) 

• “Same” convolution 
     >> conv(x,h,’same’)
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Correlation
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Correlation vs. Convolution

• Convolution is preferred mathematically as it is associative, 

(x ⇤ h) ⇤ h = x ⇤ (h ⇤ h)
• Correlation is not associative, 

(x⌦ h)⌦ h 6= x⌦ (h⌦ h)

• Correlation preferred, however, for signal matching/
detection. 
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ABSTRACT

From a signal processing perspective, pattern
detection using modern descriptors like HOG can
be efficiently posed as a correlation between a
multi-channel image and a multi-channel detec-
tor/filter, which results in a single-channel re-
sponse indicating where the pattern (e.g. object)
has occurred. Here, we proposed a novel frame-
work for learning multi-channel filters efficiently
in the frequency domain, both in terms of com-
plexity and memory usage.

CONTRIBUTIONS
• Extending canonical correlation filter theory

to efficiently handle multi-channel signals
• A multi-channel detector whose training

memory is independent of the number of
training samples

• Superior performance to current state of the
art correlation filters, and superior computa-
tional and memory efficiency in comparison
to spatial detectors (e.g. linear SVM) with
comparable detection performance

MULTI-CHANNLE CFS

(i) Spatial domain:

(ii) Fourier domain:

Complexity: O(D3K3)

Memory: O(D2K2)

(iii) Fourier domain with variable re-ordering:

Complexity: O(DK3)

Memory: O(DK2)

NOTATION: ⇤: convolution operation, |y| = D, K:# of channels and V(a(j)) = [a(1)(j), ..., a(K)(j)]

COMPARISON WITH LINEAR SVM
250 500 1000 2000 4000 8000 16000 24000

MCCF 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
SVM 6.17 12.35 24.68 49.36 98.87 197.44 395.88 592.32
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Figure 1. Comparing MCCF with SVM + HOG on the problem of pedestrian detection using Daimler dataset. Top:
Memory usage (MB) of MCCF compared to SVM as a function of number of training images. Bottom: Detection rate
as a function of (a) FPR, (b) number of training images at FPR = 0.10, and (c) training time versus training size.
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Figure 2. Facial landmark detection on the LFW dataset.
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Figure 3. Car detection on the MIT Street Dataset.
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Figure 6. Our HOG detectors cue mainly on silhouette contours (especially the head, shoulders and feet). The most active blocks are
centred on the image background just outside the contour. (a) The average gradient image over the training examples. (b) Each “pixel”
shows the maximum positive SVM weight in the block centred on the pixel. (c) Likewise for the negative SVM weights. (d) A test image.
(e) It’s computed R-HOG descriptor. (f,g) The R-HOG descriptor weighted by respectively the positive and the negative SVM weights.

results are insensitive to ϵ’s value over a large range.

Centre-surround normalization. We also investigated an
alternative centre-surround style cell normalization scheme,
in which the image is tiled with a grid of cells and for
each cell the total energy in the cell and its surrounding re-
gion (summed over orientations and pooled using Gaussian
weighting) is used to normalize the cell. However as fig. 4(c)
(“window norm”) shows, this decreases performance relative
to the corresponding block based scheme (by 2% at 10−4

FPPW, for pooling with σ=1 cell widths). One reason is
that there are no longer any overlapping blocks so each cell
is coded only once in the final descriptor. Including several
normalizations for each cell based on different pooling scales
σ provides no perceptible change in performance, so it seems
that it is the existence of several pooling regions with differ-
ent spatial offsets relative to the cell that is important here,
not the pooling scale.

To clarify this point, consider the R-HOG detector with
overlapping blocks. The coefficients of the trained linear
SVM give a measure of how much weight each cell of each
block can have in the final discrimination decision. Close ex-
amination of fig. 6(b,f) shows that the most important cells
are the ones that typically contain major human contours (es-
pecially the head and shoulders and the feet), normalized
w.r.t. blocks lying outside the contour. In other words —
despite the complex, cluttered backgrounds that are com-
mon in our training set — the detector cues mainly on the
contrast of silhouette contours against the background, not
on internal edges or on silhouette contours against the fore-
ground. Patterned clothing and pose variations may make
internal regions unreliable as cues, or foreground-to-contour
transitions may be confused by smooth shading and shad-
owing effects. Similarly, fig. 6(c,g) illustrate that gradients
inside the person (especially vertical ones) typically count as
negative cues, presumably because this suppresses false pos-

itives in which long vertical lines trigger vertical head and
leg cells.

6.5 Detector Window and Context
Our 64×128 detection window includes about 16 pixels

of margin around the person on all four sides. Fig. 4(e)
shows that this border provides a significant amount of con-
text that helps detection. Decreasing it from 16 to 8 pixels
(48×112 detection window) decreases performance by 4%
at 10−4 FPPW. Keeping a 64×128 window but increasing
the person size within it (again decreasing the border) causes
a similar loss of performance, even though the resolution of
the person is actually increased.

6.6 Classifier
By default we use a soft (C=0.01) linear SVM trained

with SVMLight [10] (slightly modified to reduce memory
usage for problems with large dense descriptor vectors). Us-
ing a Gaussian kernel SVM increases performance by about
3% at 10−4 FPPW at the cost of a much higher run time.

6.7 Discussion
Overall, there are several notable findings in this work.

The fact that HOG greatly out-performs wavelets and that
any significant degree of smoothing before calculating gra-
dients damages the HOG results emphasizes that much of
the available image information is from abrupt edges at fine
scales, and that blurring this in the hope of reducing the sen-
sitivity to spatial position is a mistake. Instead, gradients
should be calculated at the finest available scale in the cur-
rent pyramid layer, rectified or used for orientation voting,
and only then blurred spatially. Given this, relatively coarse
spatial quantization suffices (6–8 pixel wide cells / one limb
width). On the other hand, at least for human detection, it
pays to sample orientation rather finely: both wavelets and
shape contexts lose out significantly here.

Secondly, strong local contrast normalization is essen-
tial for good results, and traditional centre-surround style
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1063-6919/05 $20.00 © 2005 IEEE 



Not Always Zero Always Zero

FT F =

F Fourier Transform



x[0, 0]
x[20, 20] x[�20,�20]

x[100, 100] x[�100,�100] x[200, 200]



x[0, 0]
x[20, 20] x[�20,�20]



x[0, 0]
x[20, 20] x[�20,�20]

“subset of all 
circular shifts”

(D ⇥D)

S =
X

⌧2C0

x[⌧ ]x[⌧ ]T =

C0 ✓ C



x[0, 0]
x[20, 20] x[�20,�20]

=VVT

V 6= F



F
x

x̂

=

Carl Friedrich Gauss

Not Always Zero
Always Zero

}
⇥

. . .
⇥⇥

O(D log D)



This ignorance is well founded, Structure from Motion (SfM) [17] dictates that a 3D object/scene can be
reconstructed up to an ambiguity in scale. The vision world, however, is changing. Smart devices (phones,
tablets, etc.) are low cost, ubiquitous and packaged with more than just a monocular camera for sensing the
world.

The idea of combining measurements of an intertial measurement unit (IMU) and a monocular camera
to make metric sense of the world has been well explored by the robotics community [18,19,21,23,31,34].
Traditionally, however, the community has focused on odometry and navigation which requires accurate
and as a consequence expensive IMUs while using vision largely in a periphery manner. IMUs on modern
smart devices, in contrast, are used primarily to obtain coarse measurement of the forces being applied to the
device for the purposes of enhancing user interaction. As a consequence costs can be reduced by selecting
noisy, less accurate sensors. In isolation they are largely unsuitable for making metric sense of the world. In
this proposal we shall explore a vision centric strategy for obtaining metric reconstructions of dense
3D faces using noisy IMUs commonly found in smart devices.

3 Innovations
3.1 Compositionally Sparse Regressors
Inspiration from the FFT: In this proposal we want to draw inspiration from the evolution of the Fast
Fourier Transform (FFT) [9] on modern computational architecture. FFTs and SDMs share the same central
computational cost - a matrix transform. For example, the FFT ˆ

z = F{z} of the vectorized signal z 2 RD

can simply be expressed as
ˆ

z = F

D

z (4)

where F

D

is the D ⇥ D discrete one dimensional Fourier transform matrix. Naively the cost of this op-
eration should be O(D2

) since F

D

is a dense matrix. However, it has been well understood for decades,
since the seminal work of Cooley & Tukey [9], that F

D

has intrinsic redundancies that makes it particularly
computationally efficient – specifically that it is compositionally sparse (see Fig. 4). We define a compo-
sitionally sparse matrix R =

Q
L

l=1 S

l

as a matrix that is composed of a set of matrices {S
l

}L

l=1 each of
which are sparse of group-sparse even through the resultant matrix R itself is dense. Such a decomposition
is computationally useful if

P
L

l=1 ||Sl

||0 < ||R||0. In this case the computational advantage is clear when
one executes the matrix multiplication in a compositional manner (i.e.

Q
L

l=1 S

l

x as opposed to the more
costly (

Q
L

l=1 S

l

)x). One can see an example of this in Fig. 4 for a 16 dimensional FFT where the dense F16

matrix can be decomposed into L = 4 sparse and group-sparse matrices. In general due to this sparse com-
positional property a FFT can be applied classically in O(D log D) operations (although many extensions
on this theme now exist [14]) instead of O(D2

) naively. A critical thing to note about the sparse decom-

Figure 4: Example (adapted from [14]) of the sparse compositional properties of a 16 dimensional FFT matrix F16

which can be decomposed into: F16 = (F4 ⌦ I4)⌦
16
4 (I4 ⌦ F4)L

16
4 where L

16
4 is a permutation matrix and ⌦

16
4 is a

diagonal matrix. Remember F4 is the 4 dimensional FFT matrix, I4 is the 4⇥4 identity matrix and⌦ is the Kronecker
product operator.

position of the 16 dimensional FFT in Fig. 4 is the use of the Kronecker product operator ⌦ and identity

F16 ! 16 dimensional FFT F4 ! 4 dimensional FFT

L16
4 ! permutation matrix T16

4 ! diagonal matrix
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ABSTRACT

From a signal processing perspective, pattern
detection using modern descriptors like HOG can
be efficiently posed as a correlation between a
multi-channel image and a multi-channel detec-
tor/filter, which results in a single-channel re-
sponse indicating where the pattern (e.g. object)
has occurred. Here, we proposed a novel frame-
work for learning multi-channel filters efficiently
in the frequency domain, both in terms of com-
plexity and memory usage.

CONTRIBUTIONS
• Extending canonical correlation filter theory

to efficiently handle multi-channel signals
• A multi-channel detector whose training

memory is independent of the number of
training samples

• Superior performance to current state of the
art correlation filters, and superior computa-
tional and memory efficiency in comparison
to spatial detectors (e.g. linear SVM) with
comparable detection performance

MULTI-CHANNLE CFS

(i) Spatial domain:

(ii) Fourier domain:

Complexity: O(D3K3)

Memory: O(D2K2)

(iii) Fourier domain with variable re-ordering:

Complexity: O(DK3)

Memory: O(DK2)

NOTATION: ⇤: convolution operation, |y| = D, K:# of channels and V(a(j)) = [a(1)(j), ..., a(K)(j)]

COMPARISON WITH LINEAR SVM
250 500 1000 2000 4000 8000 16000 24000
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SVM 6.17 12.35 24.68 49.36 98.87 197.44 395.88 592.32
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Figure 1. Comparing MCCF with SVM + HOG on the problem of pedestrian detection using Daimler dataset. Top:
Memory usage (MB) of MCCF compared to SVM as a function of number of training images. Bottom: Detection rate
as a function of (a) FPR, (b) number of training images at FPR = 0.10, and (c) training time versus training size.
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Figure 2. Facial landmark detection on the LFW dataset.
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Figure 3. Car detection on the MIT Street Dataset.
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Linear Least Squares Discriminant

• One can view a correlation filter in the spatial domain as a 
linear least squares discriminant.   

• Made popular by Bolme et al., referred to in literature as a 
MOSSE filter. 
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Linear Least Squares Discriminant186 4. LINEAR MODELS FOR CLASSIFICATION
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Figure 4.4 The left plot shows data from two classes, denoted by red crosses and blue circles, together with
the decision boundary found by least squares (magenta curve) and also by the logistic regression model (green
curve), which is discussed later in Section 4.3.2. The right-hand plot shows the corresponding results obtained
when extra data points are added at the bottom left of the diagram, showing that least squares is highly sensitive
to outliers, unlike logistic regression.

boundary. In Section 7.1.2, we shall consider several alternative error functions for
classification and we shall see that they do not suffer from this difficulty.

However, problems with least squares can be more severe than simply lack of
robustness, as illustrated in Figure 4.5. This shows a synthetic data set drawn from
three classes in a two-dimensional input space (x1, x2), having the property that lin-
ear decision boundaries can give excellent separation between the classes. Indeed,
the technique of logistic regression, described later in this chapter, gives a satisfac-
tory solution as seen in the right-hand plot. However, the least-squares solution gives
poor results, with only a small region of the input space assigned to the green class.

The failure of least squares should not surprise us when we recall that it cor-
responds to maximum likelihood under the assumption of a Gaussian conditional
distribution, whereas binary target vectors clearly have a distribution that is far from
Gaussian. By adopting more appropriate probabilistic models, we shall obtain clas-
sification techniques with much better properties than least squares. For the moment,
however, we continue to explore alternative nonprobabilistic methods for setting the
parameters in the linear classification models.

4.1.4 Fisher’s linear discriminant
One way to view a linear classification model is in terms of dimensionality

reduction. Consider first the case of two classes, and suppose we take the D-
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ABSTRACT

From a signal processing perspective, pattern
detection using modern descriptors like HOG can
be efficiently posed as a correlation between a
multi-channel image and a multi-channel detec-
tor/filter, which results in a single-channel re-
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ABSTRACT
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detection using modern descriptors like HOG can
be efficiently posed as a correlation between a
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has occurred. Here, we proposed a novel frame-
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in the frequency domain, both in terms of com-
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lectivity to spatial frequency, orientation and scale (e.g. ori-
ented edge filters, Gabor filters, etc.).

Prior Art in Correlation Filters: Bolme et al. [2] re-
cently proposed an extension to traditional correlation fil-
ters referred to as Minimum Output Sum of Squared Error
(MOSSE) filters. This approach has proven invaluable for
many object tracking tasks, outperforming current state of
the art methods such as [1, 15]. A strongly related method
to MOSSE was also proposed by Bolme et al. [3] for object
detection/localization referred to as Average of Synthetic
Exact Filters (ASEF) which also reported superior perfor-
mance to state of the art. A full discussion on other variants
of correlation filters such as Optimal Tradeoff Filters (OTF)
[14], Unconstrained MACE (UMACE) [16] filters, etc. is
outside the scope of this paper. Readers are encouraged to
inspect [11] for a full treatment on the topic.

3. Correlation Filters
Due to the efficiency of correlation in the frequency do-

main, correlation filters have canonically been posed in the
frequency domain. There is nothing, however, stopping one
(other than computational expense) from expressing a cor-
relation filter in the spatial domain. In fact, we argue that
viewing a correlation filter in the spatial domain can give:
(i) important links to existing spatial methods for learning
templates/detectors, and (ii) crucial insights into fundamen-
tal problems in current correlation filter methods.

Bolme et. al’s [2] MOSSE correlation filter can be ex-
pressed in the spatial domain as solving the following ridge
regression problem,
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a signal of length D. Bolme et al. advocated the use of a
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centered
at the location of the object (typically the centre of the im-
age patch). The solution to this objective becomes,
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Solving a correlation filter in the spatial domain quickly be-
comes intractable as a function of the signal length D, as
the cost of solving Equation 2 becomes O(D3

+ ND2
).

Efficiency in the Frequency Domain: It is well understood
in the signal processing community that circular convolu-
tion in the spatial domain can be expressed as a Hadamard
product in the frequency domain. This allows one to express
the objective in Equation 1 more succinctly and equivalently
as,
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where ˆh, ˆx, ˆy are the Fourier transforms of h,x,y. The
complex conjugate of ˆh is employed to ensure the oper-
ation is correlation not convolution. The equivalence be-
tween Equations 1 and 4 also borrows heavily upon another
well known property from signal processing namely, Parse-
val’s theorem which states that
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are the average auto-spectral and cross-spectral energies re-
spectively of the training observations. The solution for ˆh in
Equations 1 and 4 are identical (other than that one is posed
in the spatial domain, and the other is in the frequency do-
main). The power of this method lies in its computational
efficiency. In the frequency domain a solution to ˆh can be
found with a cost of O(ND log D). The primary cost is
associated with the DFT on the ensemble of training sig-
nals {x

i

}N

i=1 and desired responses {y
i

}N

i=1.

Memory Efficiency: Inspecting Equation 7 one can see an
additional advantage of correlation filters when posed in the
frequency domain. Specifically, memory efficiency. One
does not need to store the training examples in memory be-
fore learning. As Equation 7 suggests one needs to sim-
ply store a summation of the auto-spectral ˆs

xx

and cross-
spectral ˆs

xy

energies. This is a powerful result not often dis-
cussed in correlation filter literature as unlike other spatial
strategies for learning detectors (e.g. linear SVM) whose
memory usage grows as a function of the number of train-
ing examples O(ND), correlation filters have fixed mem-
ory overheads O(D) irrespective of the number of training
examples.
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lectivity to spatial frequency, orientation and scale (e.g. ori-
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Prior Art in Correlation Filters: Bolme et al. [2] re-
cently proposed an extension to traditional correlation fil-
ters referred to as Minimum Output Sum of Squared Error
(MOSSE) filters. This approach has proven invaluable for
many object tracking tasks, outperforming current state of
the art methods such as [1, 15]. A strongly related method
to MOSSE was also proposed by Bolme et al. [3] for object
detection/localization referred to as Average of Synthetic
Exact Filters (ASEF) which also reported superior perfor-
mance to state of the art. A full discussion on other variants
of correlation filters such as Optimal Tradeoff Filters (OTF)
[14], Unconstrained MACE (UMACE) [16] filters, etc. is
outside the scope of this paper. Readers are encouraged to
inspect [11] for a full treatment on the topic.
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Due to the efficiency of correlation in the frequency do-

main, correlation filters have canonically been posed in the
frequency domain. There is nothing, however, stopping one
(other than computational expense) from expressing a cor-
relation filter in the spatial domain. In fact, we argue that
viewing a correlation filter in the spatial domain can give:
(i) important links to existing spatial methods for learning
templates/detectors, and (ii) crucial insights into fundamen-
tal problems in current correlation filter methods.

Bolme et. al’s [2] MOSSE correlation filter can be ex-
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regression problem,
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where ˆh, ˆx, ˆy are the Fourier transforms of h,x,y. The
complex conjugate of ˆh is employed to ensure the oper-
ation is correlation not convolution. The equivalence be-
tween Equations 1 and 4 also borrows heavily upon another
well known property from signal processing namely, Parse-
val’s theorem which states that
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are the average auto-spectral and cross-spectral energies re-
spectively of the training observations. The solution for ˆh in
Equations 1 and 4 are identical (other than that one is posed
in the spatial domain, and the other is in the frequency do-
main). The power of this method lies in its computational
efficiency. In the frequency domain a solution to ˆh can be
found with a cost of O(ND log D). The primary cost is
associated with the DFT on the ensemble of training sig-
nals {x

i

}N

i=1 and desired responses {y
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i=1.

Memory Efficiency: Inspecting Equation 7 one can see an
additional advantage of correlation filters when posed in the
frequency domain. Specifically, memory efficiency. One
does not need to store the training examples in memory be-
fore learning. As Equation 7 suggests one needs to sim-
ply store a summation of the auto-spectral ˆs

xx

and cross-
spectral ˆs

xy

energies. This is a powerful result not often dis-
cussed in correlation filter literature as unlike other spatial
strategies for learning detectors (e.g. linear SVM) whose
memory usage grows as a function of the number of train-
ing examples O(ND), correlation filters have fixed mem-
ory overheads O(D) irrespective of the number of training
examples.

3



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

ICCV
#1862

ICCV
#1862

ICCV 2013 Submission #1862. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

lectivity to spatial frequency, orientation and scale (e.g. ori-
ented edge filters, Gabor filters, etc.).

Prior Art in Correlation Filters: Bolme et al. [2] re-
cently proposed an extension to traditional correlation fil-
ters referred to as Minimum Output Sum of Squared Error
(MOSSE) filters. This approach has proven invaluable for
many object tracking tasks, outperforming current state of
the art methods such as [1, 15]. A strongly related method
to MOSSE was also proposed by Bolme et al. [3] for object
detection/localization referred to as Average of Synthetic
Exact Filters (ASEF) which also reported superior perfor-
mance to state of the art. A full discussion on other variants
of correlation filters such as Optimal Tradeoff Filters (OTF)
[14], Unconstrained MACE (UMACE) [16] filters, etc. is
outside the scope of this paper. Readers are encouraged to
inspect [11] for a full treatment on the topic.

3. Correlation Filters
Due to the efficiency of correlation in the frequency do-

main, correlation filters have canonically been posed in the
frequency domain. There is nothing, however, stopping one
(other than computational expense) from expressing a cor-
relation filter in the spatial domain. In fact, we argue that
viewing a correlation filter in the spatial domain can give:
(i) important links to existing spatial methods for learning
templates/detectors, and (ii) crucial insights into fundamen-
tal problems in current correlation filter methods.

Bolme et. al’s [2] MOSSE correlation filter can be ex-
pressed in the spatial domain as solving the following ridge
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are the average auto-spectral and cross-spectral energies re-
spectively of the training observations. The solution for ˆh in
Equations 1 and 4 are identical (other than that one is posed
in the spatial domain, and the other is in the frequency do-
main). The power of this method lies in its computational
efficiency. In the frequency domain a solution to ˆh can be
found with a cost of O(ND log D). The primary cost is
associated with the DFT on the ensemble of training sig-
nals {x

i

}N

i=1 and desired responses {y
i

}N

i=1.

Memory Efficiency: Inspecting Equation 7 one can see an
additional advantage of correlation filters when posed in the
frequency domain. Specifically, memory efficiency. One
does not need to store the training examples in memory be-
fore learning. As Equation 7 suggests one needs to sim-
ply store a summation of the auto-spectral ˆs

xx

and cross-
spectral ˆs

xy

energies. This is a powerful result not often dis-
cussed in correlation filter literature as unlike other spatial
strategies for learning detectors (e.g. linear SVM) whose
memory usage grows as a function of the number of train-
ing examples O(ND), correlation filters have fixed mem-
ory overheads O(D) irrespective of the number of training
examples.
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lectivity to spatial frequency, orientation and scale (e.g. ori-
ented edge filters, Gabor filters, etc.).

Prior Art in Correlation Filters: Bolme et al. [2] re-
cently proposed an extension to traditional correlation fil-
ters referred to as Minimum Output Sum of Squared Error
(MOSSE) filters. This approach has proven invaluable for
many object tracking tasks, outperforming current state of
the art methods such as [1, 15]. A strongly related method
to MOSSE was also proposed by Bolme et al. [3] for object
detection/localization referred to as Average of Synthetic
Exact Filters (ASEF) which also reported superior perfor-
mance to state of the art. A full discussion on other variants
of correlation filters such as Optimal Tradeoff Filters (OTF)
[14], Unconstrained MACE (UMACE) [16] filters, etc. is
outside the scope of this paper. Readers are encouraged to
inspect [11] for a full treatment on the topic.

3. Correlation Filters
Due to the efficiency of correlation in the frequency do-

main, correlation filters have canonically been posed in the
frequency domain. There is nothing, however, stopping one
(other than computational expense) from expressing a cor-
relation filter in the spatial domain. In fact, we argue that
viewing a correlation filter in the spatial domain can give:
(i) important links to existing spatial methods for learning
templates/detectors, and (ii) crucial insights into fundamen-
tal problems in current correlation filter methods.

Bolme et. al’s [2] MOSSE correlation filter can be ex-
pressed in the spatial domain as solving the following ridge
regression problem,

E(h) =

1

2

NX

i=1

DX

j=1

||y
i

(j)� hT x
i

[�⌧
j

]||22 +
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||h||22 (1)

where y
i

2 RD is the desired response for the i-th ob-
servation x

i

2 RD and � is a regularization term. C =

[�⌧ 1, . . . ,�⌧
D

] represents the set of all circular shifts for
a signal of length D. Bolme et al. advocated the use of a
2D Gaussian of small variance (2-3 pixels) for y

i

centered
at the location of the object (typically the centre of the im-
age patch). The solution to this objective becomes,

h = H�1
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] (2)

where,
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Solving a correlation filter in the spatial domain quickly be-
comes intractable as a function of the signal length D, as
the cost of solving Equation 2 becomes O(D3

+ ND2
).

Efficiency in the Frequency Domain: It is well understood
in the signal processing community that circular convolu-
tion in the spatial domain can be expressed as a Hadamard
product in the frequency domain. This allows one to express
the objective in Equation 1 more succinctly and equivalently
as,
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where ˆh, ˆx, ˆy are the Fourier transforms of h,x,y. The
complex conjugate of ˆh is employed to ensure the oper-
ation is correlation not convolution. The equivalence be-
tween Equations 1 and 4 also borrows heavily upon another
well known property from signal processing namely, Parse-
val’s theorem which states that
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The solution to Equation 4 becomes
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are the average auto-spectral and cross-spectral energies re-
spectively of the training observations. The solution for ˆh in
Equations 1 and 4 are identical (other than that one is posed
in the spatial domain, and the other is in the frequency do-
main). The power of this method lies in its computational
efficiency. In the frequency domain a solution to ˆh can be
found with a cost of O(ND log D). The primary cost is
associated with the DFT on the ensemble of training sig-
nals {x

i

}N

i=1 and desired responses {y
i

}N

i=1.

Memory Efficiency: Inspecting Equation 7 one can see an
additional advantage of correlation filters when posed in the
frequency domain. Specifically, memory efficiency. One
does not need to store the training examples in memory be-
fore learning. As Equation 7 suggests one needs to sim-
ply store a summation of the auto-spectral ˆs

xx

and cross-
spectral ˆs

xy

energies. This is a powerful result not often dis-
cussed in correlation filter literature as unlike other spatial
strategies for learning detectors (e.g. linear SVM) whose
memory usage grows as a function of the number of train-
ing examples O(ND), correlation filters have fixed mem-
ory overheads O(D) irrespective of the number of training
examples.
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>> xf = fft2(x);  



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

ICCV
#1862

ICCV
#1862

ICCV 2013 Submission #1862. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

lectivity to spatial frequency, orientation and scale (e.g. ori-
ented edge filters, Gabor filters, etc.).

Prior Art in Correlation Filters: Bolme et al. [2] re-
cently proposed an extension to traditional correlation fil-
ters referred to as Minimum Output Sum of Squared Error
(MOSSE) filters. This approach has proven invaluable for
many object tracking tasks, outperforming current state of
the art methods such as [1, 15]. A strongly related method
to MOSSE was also proposed by Bolme et al. [3] for object
detection/localization referred to as Average of Synthetic
Exact Filters (ASEF) which also reported superior perfor-
mance to state of the art. A full discussion on other variants
of correlation filters such as Optimal Tradeoff Filters (OTF)
[14], Unconstrained MACE (UMACE) [16] filters, etc. is
outside the scope of this paper. Readers are encouraged to
inspect [11] for a full treatment on the topic.

3. Correlation Filters
Due to the efficiency of correlation in the frequency do-

main, correlation filters have canonically been posed in the
frequency domain. There is nothing, however, stopping one
(other than computational expense) from expressing a cor-
relation filter in the spatial domain. In fact, we argue that
viewing a correlation filter in the spatial domain can give:
(i) important links to existing spatial methods for learning
templates/detectors, and (ii) crucial insights into fundamen-
tal problems in current correlation filter methods.

Bolme et. al’s [2] MOSSE correlation filter can be ex-
pressed in the spatial domain as solving the following ridge
regression problem,

E(h) =
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where y
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2 RD is the desired response for the i-th ob-
servation x

i

2 RD and � is a regularization term. C =

[�⌧ 1, . . . ,�⌧
D

] represents the set of all circular shifts for
a signal of length D. Bolme et al. advocated the use of a
2D Gaussian of small variance (2-3 pixels) for y

i

centered
at the location of the object (typically the centre of the im-
age patch). The solution to this objective becomes,

h = H�1
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where,
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Solving a correlation filter in the spatial domain quickly be-
comes intractable as a function of the signal length D, as
the cost of solving Equation 2 becomes O(D3

+ ND2
).

Efficiency in the Frequency Domain: It is well understood
in the signal processing community that circular convolu-
tion in the spatial domain can be expressed as a Hadamard
product in the frequency domain. This allows one to express
the objective in Equation 1 more succinctly and equivalently
as,

E(

ˆh) =
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where ˆh, ˆx, ˆy are the Fourier transforms of h,x,y. The
complex conjugate of ˆh is employed to ensure the oper-
ation is correlation not convolution. The equivalence be-
tween Equations 1 and 4 also borrows heavily upon another
well known property from signal processing namely, Parse-
val’s theorem which states that

xT
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8i, j, where x 2 RD . (5)

The solution to Equation 4 becomes
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diag(
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)
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(6)

=
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where ��1 denotes element-wise division, and
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are the average auto-spectral and cross-spectral energies re-
spectively of the training observations. The solution for ˆh in
Equations 1 and 4 are identical (other than that one is posed
in the spatial domain, and the other is in the frequency do-
main). The power of this method lies in its computational
efficiency. In the frequency domain a solution to ˆh can be
found with a cost of O(ND log D). The primary cost is
associated with the DFT on the ensemble of training sig-
nals {x

i

}N

i=1 and desired responses {y
i

}N

i=1.

Memory Efficiency: Inspecting Equation 7 one can see an
additional advantage of correlation filters when posed in the
frequency domain. Specifically, memory efficiency. One
does not need to store the training examples in memory be-
fore learning. As Equation 7 suggests one needs to sim-
ply store a summation of the auto-spectral ˆs

xx

and cross-
spectral ˆs

xy

energies. This is a powerful result not often dis-
cussed in correlation filter literature as unlike other spatial
strategies for learning detectors (e.g. linear SVM) whose
memory usage grows as a function of the number of train-
ing examples O(ND), correlation filters have fixed mem-
ory overheads O(D) irrespective of the number of training
examples.
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lectivity to spatial frequency, orientation and scale (e.g. ori-
ented edge filters, Gabor filters, etc.).

Prior Art in Correlation Filters: Bolme et al. [2] re-
cently proposed an extension to traditional correlation fil-
ters referred to as Minimum Output Sum of Squared Error
(MOSSE) filters. This approach has proven invaluable for
many object tracking tasks, outperforming current state of
the art methods such as [1, 15]. A strongly related method
to MOSSE was also proposed by Bolme et al. [3] for object
detection/localization referred to as Average of Synthetic
Exact Filters (ASEF) which also reported superior perfor-
mance to state of the art. A full discussion on other variants
of correlation filters such as Optimal Tradeoff Filters (OTF)
[14], Unconstrained MACE (UMACE) [16] filters, etc. is
outside the scope of this paper. Readers are encouraged to
inspect [11] for a full treatment on the topic.

3. Correlation Filters
Due to the efficiency of correlation in the frequency do-

main, correlation filters have canonically been posed in the
frequency domain. There is nothing, however, stopping one
(other than computational expense) from expressing a cor-
relation filter in the spatial domain. In fact, we argue that
viewing a correlation filter in the spatial domain can give:
(i) important links to existing spatial methods for learning
templates/detectors, and (ii) crucial insights into fundamen-
tal problems in current correlation filter methods.

Bolme et. al’s [2] MOSSE correlation filter can be ex-
pressed in the spatial domain as solving the following ridge
regression problem,

E(h) =

1

2
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where y
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2 RD is the desired response for the i-th ob-
servation x
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2 RD and � is a regularization term. C =

[�⌧ 1, . . . ,�⌧
D

] represents the set of all circular shifts for
a signal of length D. Bolme et al. advocated the use of a
2D Gaussian of small variance (2-3 pixels) for y

i

centered
at the location of the object (typically the centre of the im-
age patch). The solution to this objective becomes,
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where,
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Solving a correlation filter in the spatial domain quickly be-
comes intractable as a function of the signal length D, as
the cost of solving Equation 2 becomes O(D3

+ ND2
).

Efficiency in the Frequency Domain: It is well understood
in the signal processing community that circular convolu-
tion in the spatial domain can be expressed as a Hadamard
product in the frequency domain. This allows one to express
the objective in Equation 1 more succinctly and equivalently
as,
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where ˆh, ˆx, ˆy are the Fourier transforms of h,x,y. The
complex conjugate of ˆh is employed to ensure the oper-
ation is correlation not convolution. The equivalence be-
tween Equations 1 and 4 also borrows heavily upon another
well known property from signal processing namely, Parse-
val’s theorem which states that
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are the average auto-spectral and cross-spectral energies re-
spectively of the training observations. The solution for ˆh in
Equations 1 and 4 are identical (other than that one is posed
in the spatial domain, and the other is in the frequency do-
main). The power of this method lies in its computational
efficiency. In the frequency domain a solution to ˆh can be
found with a cost of O(ND log D). The primary cost is
associated with the DFT on the ensemble of training sig-
nals {x

i

}N

i=1 and desired responses {y
i

}N

i=1.

Memory Efficiency: Inspecting Equation 7 one can see an
additional advantage of correlation filters when posed in the
frequency domain. Specifically, memory efficiency. One
does not need to store the training examples in memory be-
fore learning. As Equation 7 suggests one needs to sim-
ply store a summation of the auto-spectral ˆs

xx

and cross-
spectral ˆs

xy

energies. This is a powerful result not often dis-
cussed in correlation filter literature as unlike other spatial
strategies for learning detectors (e.g. linear SVM) whose
memory usage grows as a function of the number of train-
ing examples O(ND), correlation filters have fixed mem-
ory overheads O(D) irrespective of the number of training
examples.
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>> xf = fft2(x);  
>> yf = fft2(y);  
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lectivity to spatial frequency, orientation and scale (e.g. ori-
ented edge filters, Gabor filters, etc.).

Prior Art in Correlation Filters: Bolme et al. [2] re-
cently proposed an extension to traditional correlation fil-
ters referred to as Minimum Output Sum of Squared Error
(MOSSE) filters. This approach has proven invaluable for
many object tracking tasks, outperforming current state of
the art methods such as [1, 15]. A strongly related method
to MOSSE was also proposed by Bolme et al. [3] for object
detection/localization referred to as Average of Synthetic
Exact Filters (ASEF) which also reported superior perfor-
mance to state of the art. A full discussion on other variants
of correlation filters such as Optimal Tradeoff Filters (OTF)
[14], Unconstrained MACE (UMACE) [16] filters, etc. is
outside the scope of this paper. Readers are encouraged to
inspect [11] for a full treatment on the topic.

3. Correlation Filters
Due to the efficiency of correlation in the frequency do-

main, correlation filters have canonically been posed in the
frequency domain. There is nothing, however, stopping one
(other than computational expense) from expressing a cor-
relation filter in the spatial domain. In fact, we argue that
viewing a correlation filter in the spatial domain can give:
(i) important links to existing spatial methods for learning
templates/detectors, and (ii) crucial insights into fundamen-
tal problems in current correlation filter methods.

Bolme et. al’s [2] MOSSE correlation filter can be ex-
pressed in the spatial domain as solving the following ridge
regression problem,
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where y
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2 RD and � is a regularization term. C =
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] represents the set of all circular shifts for
a signal of length D. Bolme et al. advocated the use of a
2D Gaussian of small variance (2-3 pixels) for y
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centered
at the location of the object (typically the centre of the im-
age patch). The solution to this objective becomes,
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Solving a correlation filter in the spatial domain quickly be-
comes intractable as a function of the signal length D, as
the cost of solving Equation 2 becomes O(D3

+ ND2
).

Efficiency in the Frequency Domain: It is well understood
in the signal processing community that circular convolu-
tion in the spatial domain can be expressed as a Hadamard
product in the frequency domain. This allows one to express
the objective in Equation 1 more succinctly and equivalently
as,
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where ˆh, ˆx, ˆy are the Fourier transforms of h,x,y. The
complex conjugate of ˆh is employed to ensure the oper-
ation is correlation not convolution. The equivalence be-
tween Equations 1 and 4 also borrows heavily upon another
well known property from signal processing namely, Parse-
val’s theorem which states that
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are the average auto-spectral and cross-spectral energies re-
spectively of the training observations. The solution for ˆh in
Equations 1 and 4 are identical (other than that one is posed
in the spatial domain, and the other is in the frequency do-
main). The power of this method lies in its computational
efficiency. In the frequency domain a solution to ˆh can be
found with a cost of O(ND log D). The primary cost is
associated with the DFT on the ensemble of training sig-
nals {x

i

}N

i=1 and desired responses {y
i

}N

i=1.

Memory Efficiency: Inspecting Equation 7 one can see an
additional advantage of correlation filters when posed in the
frequency domain. Specifically, memory efficiency. One
does not need to store the training examples in memory be-
fore learning. As Equation 7 suggests one needs to sim-
ply store a summation of the auto-spectral ˆs

xx

and cross-
spectral ˆs

xy

energies. This is a powerful result not often dis-
cussed in correlation filter literature as unlike other spatial
strategies for learning detectors (e.g. linear SVM) whose
memory usage grows as a function of the number of train-
ing examples O(ND), correlation filters have fixed mem-
ory overheads O(D) irrespective of the number of training
examples.
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lectivity to spatial frequency, orientation and scale (e.g. ori-
ented edge filters, Gabor filters, etc.).

Prior Art in Correlation Filters: Bolme et al. [2] re-
cently proposed an extension to traditional correlation fil-
ters referred to as Minimum Output Sum of Squared Error
(MOSSE) filters. This approach has proven invaluable for
many object tracking tasks, outperforming current state of
the art methods such as [1, 15]. A strongly related method
to MOSSE was also proposed by Bolme et al. [3] for object
detection/localization referred to as Average of Synthetic
Exact Filters (ASEF) which also reported superior perfor-
mance to state of the art. A full discussion on other variants
of correlation filters such as Optimal Tradeoff Filters (OTF)
[14], Unconstrained MACE (UMACE) [16] filters, etc. is
outside the scope of this paper. Readers are encouraged to
inspect [11] for a full treatment on the topic.

3. Correlation Filters
Due to the efficiency of correlation in the frequency do-

main, correlation filters have canonically been posed in the
frequency domain. There is nothing, however, stopping one
(other than computational expense) from expressing a cor-
relation filter in the spatial domain. In fact, we argue that
viewing a correlation filter in the spatial domain can give:
(i) important links to existing spatial methods for learning
templates/detectors, and (ii) crucial insights into fundamen-
tal problems in current correlation filter methods.

Bolme et. al’s [2] MOSSE correlation filter can be ex-
pressed in the spatial domain as solving the following ridge
regression problem,

E(h) =
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2 RD is the desired response for the i-th ob-
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2 RD and � is a regularization term. C =

[�⌧ 1, . . . ,�⌧
D

] represents the set of all circular shifts for
a signal of length D. Bolme et al. advocated the use of a
2D Gaussian of small variance (2-3 pixels) for y

i

centered
at the location of the object (typically the centre of the im-
age patch). The solution to this objective becomes,
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Solving a correlation filter in the spatial domain quickly be-
comes intractable as a function of the signal length D, as
the cost of solving Equation 2 becomes O(D3

+ ND2
).

Efficiency in the Frequency Domain: It is well understood
in the signal processing community that circular convolu-
tion in the spatial domain can be expressed as a Hadamard
product in the frequency domain. This allows one to express
the objective in Equation 1 more succinctly and equivalently
as,
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where ˆh, ˆx, ˆy are the Fourier transforms of h,x,y. The
complex conjugate of ˆh is employed to ensure the oper-
ation is correlation not convolution. The equivalence be-
tween Equations 1 and 4 also borrows heavily upon another
well known property from signal processing namely, Parse-
val’s theorem which states that
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are the average auto-spectral and cross-spectral energies re-
spectively of the training observations. The solution for ˆh in
Equations 1 and 4 are identical (other than that one is posed
in the spatial domain, and the other is in the frequency do-
main). The power of this method lies in its computational
efficiency. In the frequency domain a solution to ˆh can be
found with a cost of O(ND log D). The primary cost is
associated with the DFT on the ensemble of training sig-
nals {x

i

}N

i=1 and desired responses {y
i

}N

i=1.

Memory Efficiency: Inspecting Equation 7 one can see an
additional advantage of correlation filters when posed in the
frequency domain. Specifically, memory efficiency. One
does not need to store the training examples in memory be-
fore learning. As Equation 7 suggests one needs to sim-
ply store a summation of the auto-spectral ˆs

xx

and cross-
spectral ˆs

xy

energies. This is a powerful result not often dis-
cussed in correlation filter literature as unlike other spatial
strategies for learning detectors (e.g. linear SVM) whose
memory usage grows as a function of the number of train-
ing examples O(ND), correlation filters have fixed mem-
ory overheads O(D) irrespective of the number of training
examples.

3

>> xf = fft2(x);  
>> yf = fft2(y);  
>> sxx = xf.*conj(xf);  
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lectivity to spatial frequency, orientation and scale (e.g. ori-
ented edge filters, Gabor filters, etc.).

Prior Art in Correlation Filters: Bolme et al. [2] re-
cently proposed an extension to traditional correlation fil-
ters referred to as Minimum Output Sum of Squared Error
(MOSSE) filters. This approach has proven invaluable for
many object tracking tasks, outperforming current state of
the art methods such as [1, 15]. A strongly related method
to MOSSE was also proposed by Bolme et al. [3] for object
detection/localization referred to as Average of Synthetic
Exact Filters (ASEF) which also reported superior perfor-
mance to state of the art. A full discussion on other variants
of correlation filters such as Optimal Tradeoff Filters (OTF)
[14], Unconstrained MACE (UMACE) [16] filters, etc. is
outside the scope of this paper. Readers are encouraged to
inspect [11] for a full treatment on the topic.

3. Correlation Filters
Due to the efficiency of correlation in the frequency do-

main, correlation filters have canonically been posed in the
frequency domain. There is nothing, however, stopping one
(other than computational expense) from expressing a cor-
relation filter in the spatial domain. In fact, we argue that
viewing a correlation filter in the spatial domain can give:
(i) important links to existing spatial methods for learning
templates/detectors, and (ii) crucial insights into fundamen-
tal problems in current correlation filter methods.

Bolme et. al’s [2] MOSSE correlation filter can be ex-
pressed in the spatial domain as solving the following ridge
regression problem,
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where y
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2 RD and � is a regularization term. C =

[�⌧ 1, . . . ,�⌧
D

] represents the set of all circular shifts for
a signal of length D. Bolme et al. advocated the use of a
2D Gaussian of small variance (2-3 pixels) for y
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centered
at the location of the object (typically the centre of the im-
age patch). The solution to this objective becomes,
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Solving a correlation filter in the spatial domain quickly be-
comes intractable as a function of the signal length D, as
the cost of solving Equation 2 becomes O(D3

+ ND2
).

Efficiency in the Frequency Domain: It is well understood
in the signal processing community that circular convolu-
tion in the spatial domain can be expressed as a Hadamard
product in the frequency domain. This allows one to express
the objective in Equation 1 more succinctly and equivalently
as,
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where ˆh, ˆx, ˆy are the Fourier transforms of h,x,y. The
complex conjugate of ˆh is employed to ensure the oper-
ation is correlation not convolution. The equivalence be-
tween Equations 1 and 4 also borrows heavily upon another
well known property from signal processing namely, Parse-
val’s theorem which states that
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The solution to Equation 4 becomes
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are the average auto-spectral and cross-spectral energies re-
spectively of the training observations. The solution for ˆh in
Equations 1 and 4 are identical (other than that one is posed
in the spatial domain, and the other is in the frequency do-
main). The power of this method lies in its computational
efficiency. In the frequency domain a solution to ˆh can be
found with a cost of O(ND log D). The primary cost is
associated with the DFT on the ensemble of training sig-
nals {x

i

}N

i=1 and desired responses {y
i

}N

i=1.

Memory Efficiency: Inspecting Equation 7 one can see an
additional advantage of correlation filters when posed in the
frequency domain. Specifically, memory efficiency. One
does not need to store the training examples in memory be-
fore learning. As Equation 7 suggests one needs to sim-
ply store a summation of the auto-spectral ˆs

xx

and cross-
spectral ˆs

xy

energies. This is a powerful result not often dis-
cussed in correlation filter literature as unlike other spatial
strategies for learning detectors (e.g. linear SVM) whose
memory usage grows as a function of the number of train-
ing examples O(ND), correlation filters have fixed mem-
ory overheads O(D) irrespective of the number of training
examples.
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lectivity to spatial frequency, orientation and scale (e.g. ori-
ented edge filters, Gabor filters, etc.).

Prior Art in Correlation Filters: Bolme et al. [2] re-
cently proposed an extension to traditional correlation fil-
ters referred to as Minimum Output Sum of Squared Error
(MOSSE) filters. This approach has proven invaluable for
many object tracking tasks, outperforming current state of
the art methods such as [1, 15]. A strongly related method
to MOSSE was also proposed by Bolme et al. [3] for object
detection/localization referred to as Average of Synthetic
Exact Filters (ASEF) which also reported superior perfor-
mance to state of the art. A full discussion on other variants
of correlation filters such as Optimal Tradeoff Filters (OTF)
[14], Unconstrained MACE (UMACE) [16] filters, etc. is
outside the scope of this paper. Readers are encouraged to
inspect [11] for a full treatment on the topic.

3. Correlation Filters
Due to the efficiency of correlation in the frequency do-

main, correlation filters have canonically been posed in the
frequency domain. There is nothing, however, stopping one
(other than computational expense) from expressing a cor-
relation filter in the spatial domain. In fact, we argue that
viewing a correlation filter in the spatial domain can give:
(i) important links to existing spatial methods for learning
templates/detectors, and (ii) crucial insights into fundamen-
tal problems in current correlation filter methods.

Bolme et. al’s [2] MOSSE correlation filter can be ex-
pressed in the spatial domain as solving the following ridge
regression problem,
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2 RD and � is a regularization term. C =
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] represents the set of all circular shifts for
a signal of length D. Bolme et al. advocated the use of a
2D Gaussian of small variance (2-3 pixels) for y
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centered
at the location of the object (typically the centre of the im-
age patch). The solution to this objective becomes,
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Solving a correlation filter in the spatial domain quickly be-
comes intractable as a function of the signal length D, as
the cost of solving Equation 2 becomes O(D3

+ ND2
).

Efficiency in the Frequency Domain: It is well understood
in the signal processing community that circular convolu-
tion in the spatial domain can be expressed as a Hadamard
product in the frequency domain. This allows one to express
the objective in Equation 1 more succinctly and equivalently
as,
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where ˆh, ˆx, ˆy are the Fourier transforms of h,x,y. The
complex conjugate of ˆh is employed to ensure the oper-
ation is correlation not convolution. The equivalence be-
tween Equations 1 and 4 also borrows heavily upon another
well known property from signal processing namely, Parse-
val’s theorem which states that
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are the average auto-spectral and cross-spectral energies re-
spectively of the training observations. The solution for ˆh in
Equations 1 and 4 are identical (other than that one is posed
in the spatial domain, and the other is in the frequency do-
main). The power of this method lies in its computational
efficiency. In the frequency domain a solution to ˆh can be
found with a cost of O(ND log D). The primary cost is
associated with the DFT on the ensemble of training sig-
nals {x

i

}N

i=1 and desired responses {y
i

}N

i=1.

Memory Efficiency: Inspecting Equation 7 one can see an
additional advantage of correlation filters when posed in the
frequency domain. Specifically, memory efficiency. One
does not need to store the training examples in memory be-
fore learning. As Equation 7 suggests one needs to sim-
ply store a summation of the auto-spectral ˆs

xx

and cross-
spectral ˆs

xy

energies. This is a powerful result not often dis-
cussed in correlation filter literature as unlike other spatial
strategies for learning detectors (e.g. linear SVM) whose
memory usage grows as a function of the number of train-
ing examples O(ND), correlation filters have fixed mem-
ory overheads O(D) irrespective of the number of training
examples.

3

>> xf = fft2(x);  
>> yf = fft2(y);  
>> sxx = xf.*conj(xf);  
>> sxy = xf.*conj(yf);  
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lectivity to spatial frequency, orientation and scale (e.g. ori-
ented edge filters, Gabor filters, etc.).

Prior Art in Correlation Filters: Bolme et al. [2] re-
cently proposed an extension to traditional correlation fil-
ters referred to as Minimum Output Sum of Squared Error
(MOSSE) filters. This approach has proven invaluable for
many object tracking tasks, outperforming current state of
the art methods such as [1, 15]. A strongly related method
to MOSSE was also proposed by Bolme et al. [3] for object
detection/localization referred to as Average of Synthetic
Exact Filters (ASEF) which also reported superior perfor-
mance to state of the art. A full discussion on other variants
of correlation filters such as Optimal Tradeoff Filters (OTF)
[14], Unconstrained MACE (UMACE) [16] filters, etc. is
outside the scope of this paper. Readers are encouraged to
inspect [11] for a full treatment on the topic.

3. Correlation Filters
Due to the efficiency of correlation in the frequency do-

main, correlation filters have canonically been posed in the
frequency domain. There is nothing, however, stopping one
(other than computational expense) from expressing a cor-
relation filter in the spatial domain. In fact, we argue that
viewing a correlation filter in the spatial domain can give:
(i) important links to existing spatial methods for learning
templates/detectors, and (ii) crucial insights into fundamen-
tal problems in current correlation filter methods.

Bolme et. al’s [2] MOSSE correlation filter can be ex-
pressed in the spatial domain as solving the following ridge
regression problem,
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] represents the set of all circular shifts for
a signal of length D. Bolme et al. advocated the use of a
2D Gaussian of small variance (2-3 pixels) for y
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centered
at the location of the object (typically the centre of the im-
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Solving a correlation filter in the spatial domain quickly be-
comes intractable as a function of the signal length D, as
the cost of solving Equation 2 becomes O(D3

+ ND2
).

Efficiency in the Frequency Domain: It is well understood
in the signal processing community that circular convolu-
tion in the spatial domain can be expressed as a Hadamard
product in the frequency domain. This allows one to express
the objective in Equation 1 more succinctly and equivalently
as,
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where ˆh, ˆx, ˆy are the Fourier transforms of h,x,y. The
complex conjugate of ˆh is employed to ensure the oper-
ation is correlation not convolution. The equivalence be-
tween Equations 1 and 4 also borrows heavily upon another
well known property from signal processing namely, Parse-
val’s theorem which states that
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are the average auto-spectral and cross-spectral energies re-
spectively of the training observations. The solution for ˆh in
Equations 1 and 4 are identical (other than that one is posed
in the spatial domain, and the other is in the frequency do-
main). The power of this method lies in its computational
efficiency. In the frequency domain a solution to ˆh can be
found with a cost of O(ND log D). The primary cost is
associated with the DFT on the ensemble of training sig-
nals {x

i

}N

i=1 and desired responses {y
i

}N

i=1.

Memory Efficiency: Inspecting Equation 7 one can see an
additional advantage of correlation filters when posed in the
frequency domain. Specifically, memory efficiency. One
does not need to store the training examples in memory be-
fore learning. As Equation 7 suggests one needs to sim-
ply store a summation of the auto-spectral ˆs

xx

and cross-
spectral ˆs

xy

energies. This is a powerful result not often dis-
cussed in correlation filter literature as unlike other spatial
strategies for learning detectors (e.g. linear SVM) whose
memory usage grows as a function of the number of train-
ing examples O(ND), correlation filters have fixed mem-
ory overheads O(D) irrespective of the number of training
examples.
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lectivity to spatial frequency, orientation and scale (e.g. ori-
ented edge filters, Gabor filters, etc.).

Prior Art in Correlation Filters: Bolme et al. [2] re-
cently proposed an extension to traditional correlation fil-
ters referred to as Minimum Output Sum of Squared Error
(MOSSE) filters. This approach has proven invaluable for
many object tracking tasks, outperforming current state of
the art methods such as [1, 15]. A strongly related method
to MOSSE was also proposed by Bolme et al. [3] for object
detection/localization referred to as Average of Synthetic
Exact Filters (ASEF) which also reported superior perfor-
mance to state of the art. A full discussion on other variants
of correlation filters such as Optimal Tradeoff Filters (OTF)
[14], Unconstrained MACE (UMACE) [16] filters, etc. is
outside the scope of this paper. Readers are encouraged to
inspect [11] for a full treatment on the topic.

3. Correlation Filters
Due to the efficiency of correlation in the frequency do-

main, correlation filters have canonically been posed in the
frequency domain. There is nothing, however, stopping one
(other than computational expense) from expressing a cor-
relation filter in the spatial domain. In fact, we argue that
viewing a correlation filter in the spatial domain can give:
(i) important links to existing spatial methods for learning
templates/detectors, and (ii) crucial insights into fundamen-
tal problems in current correlation filter methods.

Bolme et. al’s [2] MOSSE correlation filter can be ex-
pressed in the spatial domain as solving the following ridge
regression problem,

E(h) =
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a signal of length D. Bolme et al. advocated the use of a
2D Gaussian of small variance (2-3 pixels) for y
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centered
at the location of the object (typically the centre of the im-
age patch). The solution to this objective becomes,
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Solving a correlation filter in the spatial domain quickly be-
comes intractable as a function of the signal length D, as
the cost of solving Equation 2 becomes O(D3

+ ND2
).

Efficiency in the Frequency Domain: It is well understood
in the signal processing community that circular convolu-
tion in the spatial domain can be expressed as a Hadamard
product in the frequency domain. This allows one to express
the objective in Equation 1 more succinctly and equivalently
as,
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where ˆh, ˆx, ˆy are the Fourier transforms of h,x,y. The
complex conjugate of ˆh is employed to ensure the oper-
ation is correlation not convolution. The equivalence be-
tween Equations 1 and 4 also borrows heavily upon another
well known property from signal processing namely, Parse-
val’s theorem which states that
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are the average auto-spectral and cross-spectral energies re-
spectively of the training observations. The solution for ˆh in
Equations 1 and 4 are identical (other than that one is posed
in the spatial domain, and the other is in the frequency do-
main). The power of this method lies in its computational
efficiency. In the frequency domain a solution to ˆh can be
found with a cost of O(ND log D). The primary cost is
associated with the DFT on the ensemble of training sig-
nals {x

i

}N

i=1 and desired responses {y
i

}N

i=1.

Memory Efficiency: Inspecting Equation 7 one can see an
additional advantage of correlation filters when posed in the
frequency domain. Specifically, memory efficiency. One
does not need to store the training examples in memory be-
fore learning. As Equation 7 suggests one needs to sim-
ply store a summation of the auto-spectral ˆs

xx

and cross-
spectral ˆs

xy

energies. This is a powerful result not often dis-
cussed in correlation filter literature as unlike other spatial
strategies for learning detectors (e.g. linear SVM) whose
memory usage grows as a function of the number of train-
ing examples O(ND), correlation filters have fixed mem-
ory overheads O(D) irrespective of the number of training
examples.

3

>> xf = fft2(x);  
>> yf = fft2(y);  
>> sxx = xf.*conj(xf);  
>> sxy = xf.*conj(yf);  
>> hf = sxy./(sxx + 1e-3);  



methods for creating filters, such as cropping a template
from an image, produce strong peaks for the target but
also falsely respond to background. As a result they are
not particularly robust to variations in target appearance
and fail on challenging tracking problems. Average of
Synthetic Exact Filters (ASEF), Unconstrained Minimum
Average Correlation Energy (UMACE), and Minimum
Output Sum of Squared Error (MOSSE) (introduced in
this paper) produce filters that are more robust to appear-
ance changes and are better at discriminating between tar-
gets and background. As shown in Figure 2, the result is
a much stronger peak which translates into less drift and
fewer dropped tracks. Traditionally, ASEF and UMACE
filters have been trained offline and are used for object de-
tection or target identification. In this research, we have
modified these techniques to be trained online and in an
adaptive manor for visual tracking. The result is tracking
with state of the art performance that retains much of the
speed and simplicity of the underlying correlation based
approach.

Despite the simplicity of the approach, tracking based
on modified ASEF, UMACE, or MOSSE filters performs
well under changes in rotation, scale, lighting, and par-
tial occlusion (See Figure 1). The Peak-to-Sidelobe Ratio
(PSR), which measures the strength of a correlation peak,
can be used to detect occlusions or tracking failure, to
stop the online update, and to reacquire the track if the
object reappears with a similar appearance. More gen-
erally, these advanced correlation filters achieve perfor-
mance consistent with the more complex trackers men-
tioned earlier; however, the filter based approach is over
20 times faster and can process 669 frames per second
(See Table 1).

Table 1: This table compares the frame rates of the MOSSE
tracker to published results for other tracking systems.

Algorithm Frame Rate CPU
FragTrack[1] realtime Unknown
GBDL[19] realtime 3.4 Ghz Pent. 4
IVT [17] 7.5fps 2.8Ghz CPU

MILTrack[2] 25 fps Core 2 Quad
MOSSE Filters 669fps 2.4Ghz Core 2 Duo

The rest of this paper is organized as follows. Section 2
reviews related correlation filter techniques. Section 3 in-
troduces the MOSSE filter and how it can be used to create
a robust filter based tracker. Section 4 presents experimen-
tal results on seven video sequences from [17]. Finally,
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Figure 2: This figure shows the input, filters, and correlation
output for Frame 25 of the fish test sequence. The three correla-
tion filters produce peaks that are much more compact than the
one produced by the Naive filter.

Section 5 will revisit the major findings of this paper.

2 Background

In the 1980’s and 1990’s, many variants of correla-
tion filters, including Synthetic Discriminant Functions
(SDF) [7, 6], Minimum Variance Synthetic Discrimi-
nant Functions (MVSDF) [9], Minimum Average Cor-
relation Energy (MACE) [11], Optimal Tradeoff Filters
(OTF) [16], and Minimum Squared Error Synthetic Dis-
criminant Functions (MSESDF) [10]. These filters are
trained on examples of target objects with varying appear-
ance and with enforced hard constraints such that the fil-
ters would always produce peaks of the same height. Most
relevant is MACE which produces sharp peaks and high
PSRs.

In [12], it was found that the hard constraints of SDF
based filters like MACE caused issues with distortion tol-
erance. The solution was to eliminate the hard constraints
and instead to require the filter to produce a high av-
erage correlation response. This new type of “Uncon-
strained” correlation filter called Maximum Average Cor-
relation Height (MACH) led to a variant of MACE called
UMACE.

A newer type of correlation filter called ASEF [3] in-
troduced a method of tuning filters for particular tasks.
Where earlier methods just specify a single peak value,
ASEF specifies the entire correlation output for each train-
ing image. ASEF has performed well at both eye local-
ization [3] and pedestrian detection [4]. Unfortunately

2
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output for Frame 25 of the fish test sequence. The three correla-
tion filters produce peaks that are much more compact than the
one produced by the Naive filter.

Section 5 will revisit the major findings of this paper.

2 Background

In the 1980’s and 1990’s, many variants of correla-
tion filters, including Synthetic Discriminant Functions
(SDF) [7, 6], Minimum Variance Synthetic Discrimi-
nant Functions (MVSDF) [9], Minimum Average Cor-
relation Energy (MACE) [11], Optimal Tradeoff Filters
(OTF) [16], and Minimum Squared Error Synthetic Dis-
criminant Functions (MSESDF) [10]. These filters are
trained on examples of target objects with varying appear-
ance and with enforced hard constraints such that the fil-
ters would always produce peaks of the same height. Most
relevant is MACE which produces sharp peaks and high
PSRs.

In [12], it was found that the hard constraints of SDF
based filters like MACE caused issues with distortion tol-
erance. The solution was to eliminate the hard constraints
and instead to require the filter to produce a high av-
erage correlation response. This new type of “Uncon-
strained” correlation filter called Maximum Average Cor-
relation Height (MACH) led to a variant of MACE called
UMACE.

A newer type of correlation filter called ASEF [3] in-
troduced a method of tuning filters for particular tasks.
Where earlier methods just specify a single peak value,
ASEF specifies the entire correlation output for each train-
ing image. ASEF has performed well at both eye local-
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lectivity to spatial frequency, orientation and scale (e.g. ori-
ented edge filters, Gabor filters, etc.).

Prior Art in Correlation Filters: Bolme et al. [2] re-
cently proposed an extension to traditional correlation fil-
ters referred to as Minimum Output Sum of Squared Error
(MOSSE) filters. This approach has proven invaluable for
many object tracking tasks, outperforming current state of
the art methods such as [1, 15]. A strongly related method
to MOSSE was also proposed by Bolme et al. [3] for object
detection/localization referred to as Average of Synthetic
Exact Filters (ASEF) which also reported superior perfor-
mance to state of the art. A full discussion on other variants
of correlation filters such as Optimal Tradeoff Filters (OTF)
[14], Unconstrained MACE (UMACE) [16] filters, etc. is
outside the scope of this paper. Readers are encouraged to
inspect [11] for a full treatment on the topic.

3. Correlation Filters
Due to the efficiency of correlation in the frequency do-

main, correlation filters have canonically been posed in the
frequency domain. There is nothing, however, stopping one
(other than computational expense) from expressing a cor-
relation filter in the spatial domain. In fact, we argue that
viewing a correlation filter in the spatial domain can give:
(i) important links to existing spatial methods for learning
templates/detectors, and (ii) crucial insights into fundamen-
tal problems in current correlation filter methods.

Bolme et. al’s [2] MOSSE correlation filter can be ex-
pressed in the spatial domain as solving the following ridge
regression problem,
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] represents the set of all circular shifts for
a signal of length D. Bolme et al. advocated the use of a
2D Gaussian of small variance (2-3 pixels) for y
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centered
at the location of the object (typically the centre of the im-
age patch). The solution to this objective becomes,
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Solving a correlation filter in the spatial domain quickly be-
comes intractable as a function of the signal length D, as
the cost of solving Equation 2 becomes O(D3

+ ND2
).

Efficiency in the Frequency Domain: It is well understood
in the signal processing community that circular convolu-
tion in the spatial domain can be expressed as a Hadamard
product in the frequency domain. This allows one to express
the objective in Equation 1 more succinctly and equivalently
as,
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where ˆh, ˆx, ˆy are the Fourier transforms of h,x,y. The
complex conjugate of ˆh is employed to ensure the oper-
ation is correlation not convolution. The equivalence be-
tween Equations 1 and 4 also borrows heavily upon another
well known property from signal processing namely, Parse-
val’s theorem which states that
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are the average auto-spectral and cross-spectral energies re-
spectively of the training observations. The solution for ˆh in
Equations 1 and 4 are identical (other than that one is posed
in the spatial domain, and the other is in the frequency do-
main). The power of this method lies in its computational
efficiency. In the frequency domain a solution to ˆh can be
found with a cost of O(ND log D). The primary cost is
associated with the DFT on the ensemble of training sig-
nals {x

i

}N

i=1 and desired responses {y
i

}N

i=1.

Memory Efficiency: Inspecting Equation 7 one can see an
additional advantage of correlation filters when posed in the
frequency domain. Specifically, memory efficiency. One
does not need to store the training examples in memory be-
fore learning. As Equation 7 suggests one needs to sim-
ply store a summation of the auto-spectral ˆs

xx

and cross-
spectral ˆs

xy

energies. This is a powerful result not often dis-
cussed in correlation filter literature as unlike other spatial
strategies for learning detectors (e.g. linear SVM) whose
memory usage grows as a function of the number of train-
ing examples O(ND), correlation filters have fixed mem-
ory overheads O(D) irrespective of the number of training
examples.
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lectivity to spatial frequency, orientation and scale (e.g. ori-
ented edge filters, Gabor filters, etc.).

Prior Art in Correlation Filters: Bolme et al. [2] re-
cently proposed an extension to traditional correlation fil-
ters referred to as Minimum Output Sum of Squared Error
(MOSSE) filters. This approach has proven invaluable for
many object tracking tasks, outperforming current state of
the art methods such as [1, 15]. A strongly related method
to MOSSE was also proposed by Bolme et al. [3] for object
detection/localization referred to as Average of Synthetic
Exact Filters (ASEF) which also reported superior perfor-
mance to state of the art. A full discussion on other variants
of correlation filters such as Optimal Tradeoff Filters (OTF)
[14], Unconstrained MACE (UMACE) [16] filters, etc. is
outside the scope of this paper. Readers are encouraged to
inspect [11] for a full treatment on the topic.

3. Correlation Filters
Due to the efficiency of correlation in the frequency do-

main, correlation filters have canonically been posed in the
frequency domain. There is nothing, however, stopping one
(other than computational expense) from expressing a cor-
relation filter in the spatial domain. In fact, we argue that
viewing a correlation filter in the spatial domain can give:
(i) important links to existing spatial methods for learning
templates/detectors, and (ii) crucial insights into fundamen-
tal problems in current correlation filter methods.

Bolme et. al’s [2] MOSSE correlation filter can be ex-
pressed in the spatial domain as solving the following ridge
regression problem,
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Solving a correlation filter in the spatial domain quickly be-
comes intractable as a function of the signal length D, as
the cost of solving Equation 2 becomes O(D3

+ ND2
).

Efficiency in the Frequency Domain: It is well understood
in the signal processing community that circular convolu-
tion in the spatial domain can be expressed as a Hadamard
product in the frequency domain. This allows one to express
the objective in Equation 1 more succinctly and equivalently
as,
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where ˆh, ˆx, ˆy are the Fourier transforms of h,x,y. The
complex conjugate of ˆh is employed to ensure the oper-
ation is correlation not convolution. The equivalence be-
tween Equations 1 and 4 also borrows heavily upon another
well known property from signal processing namely, Parse-
val’s theorem which states that
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are the average auto-spectral and cross-spectral energies re-
spectively of the training observations. The solution for ˆh in
Equations 1 and 4 are identical (other than that one is posed
in the spatial domain, and the other is in the frequency do-
main). The power of this method lies in its computational
efficiency. In the frequency domain a solution to ˆh can be
found with a cost of O(ND log D). The primary cost is
associated with the DFT on the ensemble of training sig-
nals {x

i

}N

i=1 and desired responses {y
i

}N

i=1.

Memory Efficiency: Inspecting Equation 7 one can see an
additional advantage of correlation filters when posed in the
frequency domain. Specifically, memory efficiency. One
does not need to store the training examples in memory be-
fore learning. As Equation 7 suggests one needs to sim-
ply store a summation of the auto-spectral ˆs

xx

and cross-
spectral ˆs

xy

energies. This is a powerful result not often dis-
cussed in correlation filter literature as unlike other spatial
strategies for learning detectors (e.g. linear SVM) whose
memory usage grows as a function of the number of train-
ing examples O(ND), correlation filters have fixed mem-
ory overheads O(D) irrespective of the number of training
examples.
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lectivity to spatial frequency, orientation and scale (e.g. ori-
ented edge filters, Gabor filters, etc.).

Prior Art in Correlation Filters: Bolme et al. [2] re-
cently proposed an extension to traditional correlation fil-
ters referred to as Minimum Output Sum of Squared Error
(MOSSE) filters. This approach has proven invaluable for
many object tracking tasks, outperforming current state of
the art methods such as [1, 15]. A strongly related method
to MOSSE was also proposed by Bolme et al. [3] for object
detection/localization referred to as Average of Synthetic
Exact Filters (ASEF) which also reported superior perfor-
mance to state of the art. A full discussion on other variants
of correlation filters such as Optimal Tradeoff Filters (OTF)
[14], Unconstrained MACE (UMACE) [16] filters, etc. is
outside the scope of this paper. Readers are encouraged to
inspect [11] for a full treatment on the topic.

3. Correlation Filters
Due to the efficiency of correlation in the frequency do-

main, correlation filters have canonically been posed in the
frequency domain. There is nothing, however, stopping one
(other than computational expense) from expressing a cor-
relation filter in the spatial domain. In fact, we argue that
viewing a correlation filter in the spatial domain can give:
(i) important links to existing spatial methods for learning
templates/detectors, and (ii) crucial insights into fundamen-
tal problems in current correlation filter methods.

Bolme et. al’s [2] MOSSE correlation filter can be ex-
pressed in the spatial domain as solving the following ridge
regression problem,
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2 RD and � is a regularization term. C =
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] represents the set of all circular shifts for
a signal of length D. Bolme et al. advocated the use of a
2D Gaussian of small variance (2-3 pixels) for y

i

centered
at the location of the object (typically the centre of the im-
age patch). The solution to this objective becomes,
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Solving a correlation filter in the spatial domain quickly be-
comes intractable as a function of the signal length D, as
the cost of solving Equation 2 becomes O(D3

+ ND2
).

Efficiency in the Frequency Domain: It is well understood
in the signal processing community that circular convolu-
tion in the spatial domain can be expressed as a Hadamard
product in the frequency domain. This allows one to express
the objective in Equation 1 more succinctly and equivalently
as,
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where ˆh, ˆx, ˆy are the Fourier transforms of h,x,y. The
complex conjugate of ˆh is employed to ensure the oper-
ation is correlation not convolution. The equivalence be-
tween Equations 1 and 4 also borrows heavily upon another
well known property from signal processing namely, Parse-
val’s theorem which states that
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are the average auto-spectral and cross-spectral energies re-
spectively of the training observations. The solution for ˆh in
Equations 1 and 4 are identical (other than that one is posed
in the spatial domain, and the other is in the frequency do-
main). The power of this method lies in its computational
efficiency. In the frequency domain a solution to ˆh can be
found with a cost of O(ND log D). The primary cost is
associated with the DFT on the ensemble of training sig-
nals {x

i

}N

i=1 and desired responses {y
i

}N

i=1.

Memory Efficiency: Inspecting Equation 7 one can see an
additional advantage of correlation filters when posed in the
frequency domain. Specifically, memory efficiency. One
does not need to store the training examples in memory be-
fore learning. As Equation 7 suggests one needs to sim-
ply store a summation of the auto-spectral ˆs

xx

and cross-
spectral ˆs

xy

energies. This is a powerful result not often dis-
cussed in correlation filter literature as unlike other spatial
strategies for learning detectors (e.g. linear SVM) whose
memory usage grows as a function of the number of train-
ing examples O(ND), correlation filters have fixed mem-
ory overheads O(D) irrespective of the number of training
examples.

3

N = number of training images

memory e�ciency O(D)
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lectivity to spatial frequency, orientation and scale (e.g. ori-
ented edge filters, Gabor filters, etc.).

Prior Art in Correlation Filters: Bolme et al. [2] re-
cently proposed an extension to traditional correlation fil-
ters referred to as Minimum Output Sum of Squared Error
(MOSSE) filters. This approach has proven invaluable for
many object tracking tasks, outperforming current state of
the art methods such as [1, 15]. A strongly related method
to MOSSE was also proposed by Bolme et al. [3] for object
detection/localization referred to as Average of Synthetic
Exact Filters (ASEF) which also reported superior perfor-
mance to state of the art. A full discussion on other variants
of correlation filters such as Optimal Tradeoff Filters (OTF)
[14], Unconstrained MACE (UMACE) [16] filters, etc. is
outside the scope of this paper. Readers are encouraged to
inspect [11] for a full treatment on the topic.

3. Correlation Filters
Due to the efficiency of correlation in the frequency do-

main, correlation filters have canonically been posed in the
frequency domain. There is nothing, however, stopping one
(other than computational expense) from expressing a cor-
relation filter in the spatial domain. In fact, we argue that
viewing a correlation filter in the spatial domain can give:
(i) important links to existing spatial methods for learning
templates/detectors, and (ii) crucial insights into fundamen-
tal problems in current correlation filter methods.

Bolme et. al’s [2] MOSSE correlation filter can be ex-
pressed in the spatial domain as solving the following ridge
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Solving a correlation filter in the spatial domain quickly be-
comes intractable as a function of the signal length D, as
the cost of solving Equation 2 becomes O(D3

+ ND2
).

Efficiency in the Frequency Domain: It is well understood
in the signal processing community that circular convolu-
tion in the spatial domain can be expressed as a Hadamard
product in the frequency domain. This allows one to express
the objective in Equation 1 more succinctly and equivalently
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where ˆh, ˆx, ˆy are the Fourier transforms of h,x,y. The
complex conjugate of ˆh is employed to ensure the oper-
ation is correlation not convolution. The equivalence be-
tween Equations 1 and 4 also borrows heavily upon another
well known property from signal processing namely, Parse-
val’s theorem which states that
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are the average auto-spectral and cross-spectral energies re-
spectively of the training observations. The solution for ˆh in
Equations 1 and 4 are identical (other than that one is posed
in the spatial domain, and the other is in the frequency do-
main). The power of this method lies in its computational
efficiency. In the frequency domain a solution to ˆh can be
found with a cost of O(ND log D). The primary cost is
associated with the DFT on the ensemble of training sig-
nals {x

i

}N

i=1 and desired responses {y
i

}N

i=1.

Memory Efficiency: Inspecting Equation 7 one can see an
additional advantage of correlation filters when posed in the
frequency domain. Specifically, memory efficiency. One
does not need to store the training examples in memory be-
fore learning. As Equation 7 suggests one needs to sim-
ply store a summation of the auto-spectral ˆs

xx

and cross-
spectral ˆs

xy

energies. This is a powerful result not often dis-
cussed in correlation filter literature as unlike other spatial
strategies for learning detectors (e.g. linear SVM) whose
memory usage grows as a function of the number of train-
ing examples O(ND), correlation filters have fixed mem-
ory overheads O(D) irrespective of the number of training
examples.
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lectivity to spatial frequency, orientation and scale (e.g. ori-
ented edge filters, Gabor filters, etc.).

Prior Art in Correlation Filters: Bolme et al. [2] re-
cently proposed an extension to traditional correlation fil-
ters referred to as Minimum Output Sum of Squared Error
(MOSSE) filters. This approach has proven invaluable for
many object tracking tasks, outperforming current state of
the art methods such as [1, 15]. A strongly related method
to MOSSE was also proposed by Bolme et al. [3] for object
detection/localization referred to as Average of Synthetic
Exact Filters (ASEF) which also reported superior perfor-
mance to state of the art. A full discussion on other variants
of correlation filters such as Optimal Tradeoff Filters (OTF)
[14], Unconstrained MACE (UMACE) [16] filters, etc. is
outside the scope of this paper. Readers are encouraged to
inspect [11] for a full treatment on the topic.

3. Correlation Filters
Due to the efficiency of correlation in the frequency do-

main, correlation filters have canonically been posed in the
frequency domain. There is nothing, however, stopping one
(other than computational expense) from expressing a cor-
relation filter in the spatial domain. In fact, we argue that
viewing a correlation filter in the spatial domain can give:
(i) important links to existing spatial methods for learning
templates/detectors, and (ii) crucial insights into fundamen-
tal problems in current correlation filter methods.

Bolme et. al’s [2] MOSSE correlation filter can be ex-
pressed in the spatial domain as solving the following ridge
regression problem,
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Solving a correlation filter in the spatial domain quickly be-
comes intractable as a function of the signal length D, as
the cost of solving Equation 2 becomes O(D3

+ ND2
).

Efficiency in the Frequency Domain: It is well understood
in the signal processing community that circular convolu-
tion in the spatial domain can be expressed as a Hadamard
product in the frequency domain. This allows one to express
the objective in Equation 1 more succinctly and equivalently
as,
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where ˆh, ˆx, ˆy are the Fourier transforms of h,x,y. The
complex conjugate of ˆh is employed to ensure the oper-
ation is correlation not convolution. The equivalence be-
tween Equations 1 and 4 also borrows heavily upon another
well known property from signal processing namely, Parse-
val’s theorem which states that
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are the average auto-spectral and cross-spectral energies re-
spectively of the training observations. The solution for ˆh in
Equations 1 and 4 are identical (other than that one is posed
in the spatial domain, and the other is in the frequency do-
main). The power of this method lies in its computational
efficiency. In the frequency domain a solution to ˆh can be
found with a cost of O(ND log D). The primary cost is
associated with the DFT on the ensemble of training sig-
nals {x

i

}N

i=1 and desired responses {y
i

}N

i=1.

Memory Efficiency: Inspecting Equation 7 one can see an
additional advantage of correlation filters when posed in the
frequency domain. Specifically, memory efficiency. One
does not need to store the training examples in memory be-
fore learning. As Equation 7 suggests one needs to sim-
ply store a summation of the auto-spectral ˆs

xx

and cross-
spectral ˆs

xy

energies. This is a powerful result not often dis-
cussed in correlation filter literature as unlike other spatial
strategies for learning detectors (e.g. linear SVM) whose
memory usage grows as a function of the number of train-
ing examples O(ND), correlation filters have fixed mem-
ory overheads O(D) irrespective of the number of training
examples.
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lectivity to spatial frequency, orientation and scale (e.g. ori-
ented edge filters, Gabor filters, etc.).

Prior Art in Correlation Filters: Bolme et al. [2] re-
cently proposed an extension to traditional correlation fil-
ters referred to as Minimum Output Sum of Squared Error
(MOSSE) filters. This approach has proven invaluable for
many object tracking tasks, outperforming current state of
the art methods such as [1, 15]. A strongly related method
to MOSSE was also proposed by Bolme et al. [3] for object
detection/localization referred to as Average of Synthetic
Exact Filters (ASEF) which also reported superior perfor-
mance to state of the art. A full discussion on other variants
of correlation filters such as Optimal Tradeoff Filters (OTF)
[14], Unconstrained MACE (UMACE) [16] filters, etc. is
outside the scope of this paper. Readers are encouraged to
inspect [11] for a full treatment on the topic.

3. Correlation Filters
Due to the efficiency of correlation in the frequency do-

main, correlation filters have canonically been posed in the
frequency domain. There is nothing, however, stopping one
(other than computational expense) from expressing a cor-
relation filter in the spatial domain. In fact, we argue that
viewing a correlation filter in the spatial domain can give:
(i) important links to existing spatial methods for learning
templates/detectors, and (ii) crucial insights into fundamen-
tal problems in current correlation filter methods.

Bolme et. al’s [2] MOSSE correlation filter can be ex-
pressed in the spatial domain as solving the following ridge
regression problem,
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Solving a correlation filter in the spatial domain quickly be-
comes intractable as a function of the signal length D, as
the cost of solving Equation 2 becomes O(D3

+ ND2
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Efficiency in the Frequency Domain: It is well understood
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tion in the spatial domain can be expressed as a Hadamard
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the objective in Equation 1 more succinctly and equivalently
as,

E(

ˆh) =

1

2

NX

i=1

||ˆy
i

� ˆx
i

� conj(ˆh)||22 +

�

2

||ˆh||22 (4)

=

1

2

NX

i=1

||ˆy
i

� diag(

ˆx
i

)

T

ˆh||22 +

�

2

||ˆh||22 .

where ˆh, ˆx, ˆy are the Fourier transforms of h,x,y. The
complex conjugate of ˆh is employed to ensure the oper-
ation is correlation not convolution. The equivalence be-
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well known property from signal processing namely, Parse-
val’s theorem which states that
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are the average auto-spectral and cross-spectral energies re-
spectively of the training observations. The solution for ˆh in
Equations 1 and 4 are identical (other than that one is posed
in the spatial domain, and the other is in the frequency do-
main). The power of this method lies in its computational
efficiency. In the frequency domain a solution to ˆh can be
found with a cost of O(ND log D). The primary cost is
associated with the DFT on the ensemble of training sig-
nals {x

i

}N

i=1 and desired responses {y
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}N

i=1.

Memory Efficiency: Inspecting Equation 7 one can see an
additional advantage of correlation filters when posed in the
frequency domain. Specifically, memory efficiency. One
does not need to store the training examples in memory be-
fore learning. As Equation 7 suggests one needs to sim-
ply store a summation of the auto-spectral ˆs

xx

and cross-
spectral ˆs

xy

energies. This is a powerful result not often dis-
cussed in correlation filter literature as unlike other spatial
strategies for learning detectors (e.g. linear SVM) whose
memory usage grows as a function of the number of train-
ing examples O(ND), correlation filters have fixed mem-
ory overheads O(D) irrespective of the number of training
examples.
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ABSTRACT

From a signal processing perspective, pattern
detection using modern descriptors like HOG can
be efficiently posed as a correlation between a
multi-channel image and a multi-channel detec-
tor/filter, which results in a single-channel re-
sponse indicating where the pattern (e.g. object)
has occurred. Here, we proposed a novel frame-
work for learning multi-channel filters efficiently
in the frequency domain, both in terms of com-
plexity and memory usage.

CONTRIBUTIONS
• Extending canonical correlation filter theory

to efficiently handle multi-channel signals
• A multi-channel detector whose training

memory is independent of the number of
training samples

• Superior performance to current state of the
art correlation filters, and superior computa-
tional and memory efficiency in comparison
to spatial detectors (e.g. linear SVM) with
comparable detection performance

MULTI-CHANNLE CFS

(i) Spatial domain:

(ii) Fourier domain:

Complexity: O(D3K3)

Memory: O(D2K2)

(iii) Fourier domain with variable re-ordering:

Complexity: O(DK3)

Memory: O(DK2)

NOTATION: ⇤: convolution operation, |y| = D, K:# of channels and V(a(j)) = [a(1)(j), ..., a(K)(j)]

COMPARISON WITH LINEAR SVM
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Figure 1. Comparing MCCF with SVM + HOG on the problem of pedestrian detection using Daimler dataset. Top:
Memory usage (MB) of MCCF compared to SVM as a function of number of training images. Bottom: Detection rate
as a function of (a) FPR, (b) number of training images at FPR = 0.10, and (c) training time versus training size.
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Figure 2. Facial landmark detection on the LFW dataset.
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Abstract

Modern descriptors like HOG and SIFT are now com-
monly used in vision for pattern detection within im-
age and video. From a signal processing perspective,
this detection process can be efficiently posed as a cor-
relation/convolution between a multi-channel image and
a multi-channel detector/filter which results in a single-
channel response map indicating where the pattern (e.g.
object) has occurred. In this paper, we propose a novel
framework for learning a multi-channel detector/filter ef-
ficiently in the frequency domain, both in terms of training
time and memory footprint, which we refer to as a multi-
channel correlation filter. To demonstrate the effectiveness
of our strategy, we evaluate it across a number of visual de-
tection/localization tasks where we: (i) exhibit superior per-
formance to current state of the art correlation filters, and
(ii) superior computational and memory efficiencies com-
pared to state of the art spatial detectors.

1. Introduction
In computer vision it is now rare for tasks like convo-

lution/correlation to be performed on single channel image
signals (e.g. 2D array of intensity values). With the advent
of advanced descriptors like HOG [5] and SIFT [13] convo-
lution/correlation across multi-channel signals has become
the norm rather than the exception in most visual detection
tasks. Most of these image descriptors can be viewed as
multi-channel images/signals with multiple measurements
(such the oriented edge energies) associated with each pixel
location. We shall herein refer to all image descriptors as
multi-channel images. An example of multi-channel corre-
lation can be seen in Figure 1 where a multi-channel image
is convolved/correlated with a multi-channel filter/detector
in order to obtain a single-channel response. The peak of
the response (in white) indicating where the pattern of in-
terest is located.

Like single channel signals, correlation between two
multi-channel signals is rarely performed naively in the spa-

!

x

h
y

Figure 1. An example of multi-channel correlation/convolution
where one has a multi-channel image x correlated/convolved with
a multi-channel filter h to give a single-channel response y. By
posing this objective in the frequency domain, our multi-channel
correlation filter approach attempts to give a computational &
memory efficient strategy for estimating h given x and y.

tial domain. Instead, the fast Fourier transform (FFT) af-
fords the efficient application of correlating a desired tem-
plate/filter with a signal. Contrastingly, however, most tech-
niques for estimating a detector for such a purpose (i.e. de-
tection/tracking through convolution) are performed in the
spatial domain [5]. It is this dilemma that is at the heart of
our paper.

This has not always been the case. Correlation fil-
ters, developed initially in the seminal work of Hester and
Casasent [8], are a method for learning a template/filter
in the frequency domain that rose to some prominence in
the 80s and 90s. Although many variants have been pro-
posed [8, 11, 12], the approach’s central tenet is to learn
a filter, that when correlated with a set of training sig-
nals, gives a desired response (typically a peak at the origin
of the object, with all other regions of the correlation re-
sponse map being suppressed). Like correlation itself, one
of the central advantages of the single channel approach is
that it attempts to learn the filter in the frequency domain
due to the efficiency of correlation/convolution in that do-
main. Learning multi-channel filters in the frequency do-
main, however, comes at the high cost of computation and
memory usage. In this paper we present an efficient strategy
for learning multi-channel signals/filters that has numerous
applications throughout vision and learning.
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Abstract
Although not commonly used, correlation filters can track
complex objects through rotations, occlusions and other
distractions at over 20 times the rate of current state-of-
the-art techniques. The oldest and simplest correlation
filters use simple templates and generally fail when ap-
plied to tracking. More modern approaches such as ASEF
and UMACE perform better, but their training needs are
poorly suited to tracking. Visual tracking requires robust
filters to be trained from a single frame and dynamically
adapted as the appearance of the target object changes.

This paper presents a new type of correlation filter, a
Minimum Output Sum of Squared Error (MOSSE) filter,
which produces stable correlation filters when initialized
using a single frame. A tracker based upon MOSSE fil-
ters is robust to variations in lighting, scale, pose, and
non-rigid deformations while operating at 669 frames per
second. Occlusion is detected based upon the peak-to-
sidelobe ratio, which enables the tracker to pause and re-
sume where it left off when the object reappears.

Note: This paper contains additional figures and con-
tent that was excluded from CVPR 2010 to meet length
requirements.

1 Introduction
Visual tracking has many practical applications in video
processing. When a target is located in one frame of
a video, it is often useful to track that object in subse-
quent frames. Every frame in which the target is success-
fully tracked provides more information about the identity
and the activity of the target. Because tracking is easier
than detection, tracking algorithms can use fewer compu-
tational resources than running an object detector on every
frame.

Visual tracking has received much attention in recent

Figure 1: This figure shows the results of the MOSSE filter
based tracker on a challenging video sequence. This tracker has
the ability to quickly adapt to scale and rotation changes. It is
also capable of detecting tracking failure and recovering from
occlusion.

years. A number of robust tracking strategies have been
proposed that tolerate changes in target appearance and
track targets through complex motions. Recent examples
include: Incremental Visual Tracking (IVT) [17], Robust
Fragments-based Tracking (FragTrack) [1], Graph Based
Discriminative Learning (GBDL) [19], and Multiple In-
stance Learning (MILTrack) [2]. Although effective,
these techniques are not simple; they often include com-
plex appearance models and/or optimization algorithms,
and as result struggle to keep up with the 25 to 30 frames
per second produced by many modern cameras (See Ta-
ble 1).

In this paper we investigate a simpler tracking strategy.
The targets appearance is modeled by adaptive correlation
filters, and tracking is performed via convolution. Naive
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