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Object Detection/Tracking as a “Black Box” 

Instructor - Simon Lucey  
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Today

• Motivation - Object Detection/Tracking 
• Computer Vision as a “Black Box” - Considerations 
• Detection  

• Computer Vision as a Service (VMX, Project Oxford, Clarifai).  
• OpenCV 3.0 (face and pedestrian detectors, what’s new?) 
• DLib C++ (create your own detector!!!) 
• Caffe (Deep Learning) 

• Tracking 
• Correlation Filters (fast in tracking in just a few lines of code)  
• Predator (tracking an object efficiently/quickly)
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Just a sampling - by no means a complete list!!!
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What is an Object?

Face
Body

Left EyeRight Eye
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Right Lower Arm Head
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Arm
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Left Thigh
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What is a Part?

Face

Left Eye

Left Eye

Not Left Eye



When is a Collection of Parts an Object?



When is a Collection of Parts an Object?

Face



When is a Collection of Parts an Object?
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When is a Collection of Parts an Object?

Face Not a FaceFace



What is an Object?

“A collection of semantically meaningful 
components with geometrical constraints on 

their spatial configuration’’

Data



Best Method is Domain Specific

No Silver Bullet



Today

• Motivation - Object Detection/Tracking 
• Computer Vision as a “Black Box” - Considerations 
• Detection  

• Computer Vision as a Service (VMX, Project Oxford, Clarifai).  
• OpenCV 3.0 (face and pedestrian detectors, what’s new?) 
• DLib C++ (create your own detector!!!) 
• Caffe (Deep Learning) 

• Tracking 
• Correlation Filters (fast in tracking in just a few lines of code)  
• Predator (tracking an object efficiently/quickly)
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Just a sampling - by no means a complete list!!!



Computer Vision as a “Black Box”

• Increasingly, people want to employ computer vision in a 
variety of new applications.  

• Want to use Computer Vision as a “Black  Box” - i.e. do not 
care about how it works as along as it does what it is 
supposed to do.  

• Your ability to treat computer vision as a “Black Box” is a 
function of what you want to do.  

• In this lecture, we will try and give a brief overview of the this 
space. 

10
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Solutions Exist

• You need to consider where your problem/task lies. 
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Object Specificity

• Faces (well established - mature) 

• Bodies (becoming more mature) 

• General Objects (emerging)
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3.1 Results on Synthetic Data

We present results on synthetic data that demonstrates the
behavior and capability of geometric blur.
In order to see that geometric blur helps in discrimina-

tion we performed a discrimination task using 200 test pat-
terns. Rotated versions of the test patterns were compared
to the original test patterns. Both the original test patterns
and the rotated versions were blurred by either geometric
blur or a uniform Gaussian blur. For geometric blur, a spa-
tially varying kernel Kx(y) = Gα|x|(y), where Gσ(y) is a
Gaussian with standard deviation σ, was applied. For uni-
form Gaussian blur the kernel Gσ(y) was applied. Then
each blurred rotated pattern was compared to all the blurred
original patterns using normalized correlation and matched
to the closest one. The test patterns used in this example
were random with each pixel in a disc of radius 25 pix-
els being turned on with probability 5%. Figures 5 and 6
show the mis-classification rate as the amount of blur, α or
σ is varied. Geometric blur has much better discriminative
power, and manages to be general enough to handle large
rotation somewhat more effectively than uniform blur.
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Figure 5: Identifying 200 random test images after rotation,
using various amounts (α) of geometric blur.
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Figure 6: Identifying 200 random test images after rotation,
using various amounts (σ) of uniform Gaussian blur.

3.2. Pre-processing to obtain Sparse Signals

Geometric blur is most effective when applied to sparse
signals. Images when considered as 2D brightness sig-
nals are not sparse. However much work indicates that
oriented edge filter responses from images are sparse [4]
[5]. Also the formulation and theoretical results about geo-
metric blur so far have assumed a non-negative signal. To
meet the sparseness and non-negative requirements when
considering real images, we break images up into a num-
ber of channels. Each channel is a half-wave rectified ori-
ented edge response. In particular if E(x) is a filter then
two channels would be C1(x) = [I(x)E(x)]χ[I(x)E(x)>0]

and C2(x) = − [I(x)E(x)]χ[I(x)E(x)<0]. We also use a
contrast normalization on the channels [3]. In particular if
C = [C1(x) . . . Cn(x)] is a vector of channel values at x,
then the normalized version would be 1

|C|2+ϵ
where we use

an ϵ = 0.3 for filters with response between +1 and -1. Fig-
ure 7 shows an image and a set of 12 channels resulting
from 6 oriented edge filters.
One useful consequence of treating the positive and neg-

ative components of oriented edge responses separately is
that information about zero crossings is not lost under blur-
ring. Instead of blurring the signal response around a zero
crossing to zero, the positive and negative responses are
both blurred over the area, retaining the information that
there was a zero crossing, but allowing uncertainty as to its
position.

Figure 7: The twelve half-wave rectified channels contrast
normalized from the response of 6 oriented edge filters on
the image. White indicates zero, and black indicates a posi-
tive value. Note that the filter responses are sparse, making
the individual channels appropriate for geometric blur
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(a) (b) (c) (d) (e) (f) (g)
Figure 6. Our HOG detectors cue mainly on silhouette contours (especially the head, shoulders and feet). The most active blocks are
centred on the image background just outside the contour. (a) The average gradient image over the training examples. (b) Each “pixel”
shows the maximum positive SVM weight in the block centred on the pixel. (c) Likewise for the negative SVM weights. (d) A test image.
(e) It’s computed R-HOG descriptor. (f,g) The R-HOG descriptor weighted by respectively the positive and the negative SVM weights.

would help to improve the detection results in more general
situations.
Acknowledgments. This work was supported by the Euro-
pean Union research projects ACEMEDIA and PASCAL. We
thanks Cordelia Schmid for many useful comments. SVM-
Light [10] provided reliable training of large-scale SVM’s.
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Figure 8. Comparisons. (a) Comparison with nearest neighbor matching. (b) Comparison with [13]. Even without the kinematic and
temporal constraints exploited by [13], our algorithm is able to more accurately localize body joints.

in the source mocap data, the properties of the generative
model underlying the synthesis pipeline, and the particular
part definitions. Whether a similarly efficient approach that
can directly regress joint positions is also an open question.
Perhaps a global estimate of latent variables such as coarse
person orientation could be used to condition the body part
inference and remove ambiguities in local pose estimates.
Acknowledgements. We thank the many skilled engineers in
Xbox, particularly Robert Craig, Matt Bronder, Craig Peeper, Momin Al-
Ghosien, and Ryan Geiss, who built the Kinect tracking system on top
of this research. We also thank John Winn, Duncan Robertson, Antonio
Criminisi, Shahram Izadi, Ollie Williams, and Mihai Budiu for help and
valuable discussions, and Varun Ganapathi and Christian Plagemann for
providing their test data.
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Hard Negative Mining

• Hard Negative Mining comes about from realization that not 
ALL samples are important when learning a classifier.  

• Useful for “Big Data” as one does not need to keep all data 
in memory during learning. 

15(a) (b)



Hard Negative Mining

• Common methodology  (Dalal & Triggs, 2005) is to, 

• Start with random negatives, then repeat  

1. Train model 

2. Harvest false positive to define “hard negatives”.  

• HNM is largely based on heuristics.  

• Notoriously slow and messy to determine the hard 

negatives.
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Static/Dynamic Training

• We can categorize object detection methods into two camps   
1. static training - involves learning a detector from a dataset that is 

static and does not change from application to application (e.g. face 
detection). 

2. dynamic training - involves using your own dataset for the object 
you are wanting to detect. 

• Dynamic training is also useful in object tracking - where one 
wants to employ a “track by update” paradigm. 

17



Today

• Motivation - Object Detection/Tracking 
• Computer Vision as a “Black Box” - Considerations 
• Detection  

• Computer Vision as a Service (VMX, Project Oxford, Clarifai).  
• OpenCV 3.0 (face and pedestrian detectors, what’s new?) 
• DLib C++ (create your own detector!!!) 
• Caffe (Deep Learning) 

• Tracking 
• Correlation Filters (fast in tracking in just a few lines of code)  
• Predator (tracking an object efficiently/quickly)

18

Just a sampling - by no means a complete list!!!



Computer Vision as a Service

• Provide computer vision services through the cloud.  
• Increasingly popular as developers do not need any intimate 

knowledge of computer vision.  
• Pros - automatically support multiple platforms.  
• Drawbacks - have to consider bandwidth & speed. 

19



Project Oxford
• Well known in this space is “Project Oxford” from Microsoft.  
• Contains an evolving portfolio of REST APIs & SDKs 

enabling developers to easily add intelligent services.  
• Other services include - VMX & Clarifai. 

20

http://www.apple.com
https://vision.ai/
http://www.clarifai.com


What can OpenCV do?
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Filters Segmentation 

Detection and 
recognition 

Transformations 

Image Processing 

Video, Stereo, 3D 

Calibration 

Robust 
features 

Depth 

Edges, 
contours 

Optical Flow Pose 
estimation 

Functionality overview 

Taken from OpenCV 3.0 latest news and the roadmap. 

http://www.apple.com
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OpenCV 3.0

• In terms of detectors all the standards one are still there:- 
• Viola & Jones style face detector.  

• Dalal & Triggs style pedestrian detector. 

• Support in 3.0 now for deformable parts based models. 
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3.1 Results on Synthetic Data

We present results on synthetic data that demonstrates the
behavior and capability of geometric blur.
In order to see that geometric blur helps in discrimina-

tion we performed a discrimination task using 200 test pat-
terns. Rotated versions of the test patterns were compared
to the original test patterns. Both the original test patterns
and the rotated versions were blurred by either geometric
blur or a uniform Gaussian blur. For geometric blur, a spa-
tially varying kernel Kx(y) = Gα|x|(y), where Gσ(y) is a
Gaussian with standard deviation σ, was applied. For uni-
form Gaussian blur the kernel Gσ(y) was applied. Then
each blurred rotated pattern was compared to all the blurred
original patterns using normalized correlation and matched
to the closest one. The test patterns used in this example
were random with each pixel in a disc of radius 25 pix-
els being turned on with probability 5%. Figures 5 and 6
show the mis-classification rate as the amount of blur, α or
σ is varied. Geometric blur has much better discriminative
power, and manages to be general enough to handle large
rotation somewhat more effectively than uniform blur.
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Figure 5: Identifying 200 random test images after rotation,
using various amounts (α) of geometric blur.

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100

Amount of uniform blur, sigma

%
 e

rr
or

 ra
te

20° rotation
40° rotation

Figure 6: Identifying 200 random test images after rotation,
using various amounts (σ) of uniform Gaussian blur.

3.2. Pre-processing to obtain Sparse Signals

Geometric blur is most effective when applied to sparse
signals. Images when considered as 2D brightness sig-
nals are not sparse. However much work indicates that
oriented edge filter responses from images are sparse [4]
[5]. Also the formulation and theoretical results about geo-
metric blur so far have assumed a non-negative signal. To
meet the sparseness and non-negative requirements when
considering real images, we break images up into a num-
ber of channels. Each channel is a half-wave rectified ori-
ented edge response. In particular if E(x) is a filter then
two channels would be C1(x) = [I(x)E(x)]χ[I(x)E(x)>0]

and C2(x) = − [I(x)E(x)]χ[I(x)E(x)<0]. We also use a
contrast normalization on the channels [3]. In particular if
C = [C1(x) . . . Cn(x)] is a vector of channel values at x,
then the normalized version would be 1

|C|2+ϵ
where we use

an ϵ = 0.3 for filters with response between +1 and -1. Fig-
ure 7 shows an image and a set of 12 channels resulting
from 6 oriented edge filters.
One useful consequence of treating the positive and neg-

ative components of oriented edge responses separately is
that information about zero crossings is not lost under blur-
ring. Instead of blurring the signal response around a zero
crossing to zero, the positive and negative responses are
both blurred over the area, retaining the information that
there was a zero crossing, but allowing uncertainty as to its
position.

Figure 7: The twelve half-wave rectified channels contrast
normalized from the response of 6 oriented edge filters on
the image. White indicates zero, and black indicates a posi-
tive value. Note that the filter responses are sparse, making
the individual channels appropriate for geometric blur
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(a) (b) (c) (d) (e) (f) (g)

Figure 6. Our HOG detectors cue mainly on silhouette contours (especially the head, shoulders and feet). The most active blocks are
centred on the image background just outside the contour. (a) The average gradient image over the training examples. (b) Each “pixel”
shows the maximum positive SVM weight in the block centred on the pixel. (c) Likewise for the negative SVM weights. (d) A test image.
(e) It’s computed R-HOG descriptor. (f,g) The R-HOG descriptor weighted by respectively the positive and the negative SVM weights.

would help to improve the detection results in more general
situations.
Acknowledgments. This work was supported by the Euro-
pean Union research projects ACEMEDIA and PASCAL. We
thanks Cordelia Schmid for many useful comments. SVM-
Light [10] provided reliable training of large-scale SVM’s.
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• Instead of searching all regions of an image with the same 
complexity classifier, we can use a cascade.

24

3. Combine the weak classifiers (requires one multiply per feature, an addition, and finally a threshold).

A two feature classifier amounts to about 60 microprocessor instructions. It seems hard to imagine that

any simpler filter could achieve higher rejection rates. By comparison, scanning a simple image template,

or a single layer perceptron, would require at least 20 times as many operations per sub-window.

The overall form of the detection process is that of a degenerate decision tree, what we call a “cascade”

[11] (see Figure 6). A positive result from the first classifier triggers the evaluation of a second classifier

which has also been adjusted to achieve very high detection rates. A positive result from the second classifier

triggers a third classifier, and so on. A negative outcome at any point leads to the immediate rejection of the

sub-window.

T

F

T

F

T

F

1 2 3

Reject Sub!window

All Sub!windows

Further

Processing

Figure 6: Schematic depiction of a the detection cascade. A series of classifiers are applied to every sub-

window. The initial classifier eliminates a large number of negative examples with very little processing.

Subsequent layers eliminate additional negatives but require additional computation. After several stages of

processing the number of sub-windows have been reduced radically. Further processing can take any form

such as additional stages of the cascade (as in our detection system) or an alternative detection system.

The structure of the cascade reflects the fact that within any single image an overwhelming majority of

sub-windows are negative. As such, the cascade attempts to reject as many negatives as possible at the

earliest stage possible. While a positive instance will trigger the evaluation of every classifier in the cascade,

this is an exceedingly rare event.

Much like a decision tree, subsequent classifiers are trained using those examples which pass through all

the previous stages. As a result, the second classifier faces a more difficult task than the first. The examples

which make it through the first stage are “harder” than typical examples. The more difficult examples faced

by deeper classifiers push the entire reciever operating characteristic (ROC) curve downward. At a given

detection rate, deeper classifiers have correspondingly higher false positive rates.

12
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• Vast majority of regions in an natural image can be rejected 
using small capacity classifiers. 

25

each overlapping patch x of an input image.

1. Set the hierarchy level tom = 1.

2. Evaluate ym = sgn
(∑m

j=1 βm,jKj + bm

)
where Kj =

k(x, zj).

3. • if ym < 0, x is classified as a non-face and the
algorithm stops.

• if ym ≥ 0, m is incremented. If m = Nz the

algorithm stops, otherwise evaluation continues

at step 2.

4. if yj ≥ 0 and j = Nz , the full SVM is applied on the

patch x, using equation 3. If the evaluation is positive
the patch is classified as a face.

The main feature of this approach is that on average, rela-

tively few kernelsKj have to be evaluated at any given im-

age location — i.e., for most patches, the algorithm above

stops at a level j ≪ Nz . This speeds up the algorithm rela-

tive to the full reduced set (by more than an order of magni-

tude in the face classification experiments reported below).

Note that in the case of gaussian kernels, the application of

one reduced set vector amounts to a simple template match-

ing operation.

Setting offsets. The offsets bm are fixed to obtain a de-

sired point on the R.O.C. for the overall sequential scheme.

Suppose an overall false negative rate ν is required, then,
given a “decay rate” α, we express ν as a geometric series
by setting false negative rates νm for themth level in the hi-
erarchy to νj = ανj−1 where ν1 = ν(1−α).Now each bm

is fixed to achieve the desired νm over a validation set. The

free parameter α can now be set to maximize the overall

true positive rate over the validation set.

6 Results

Within this section the new sequential evaluation algorithm

is tested for speed and accuracy.

Speed Improvement. At detection time, due to the se-

quential evaluation of the patches, very few reduced set vec-

tors are applied. Figure 3 shows the number of reduced set

vectors evaluated per patches for different methods (SVM,

RSM and SRSM (Sequential Reduced Set Machine)), when

the algorithm is applied to the photo in Fig 4. The Full

SVM and the RSM evaluate all their support or reduced set

vectors on all the patches, while the SRSM uses on average

only 2.8 reduced set vectors per patch. Figure 4 shows the

patches of an input image which remain after 1, 10, 20 and

30 sequential reduced set evaluations on an image with one
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Figure 3: Number of reduced set vectors used per patch for the
full SVM (8291 support vectors), Reduced Set SVM and Sequential

Reduced Set SVM (both at 100 reduced set vector)

Figure 4: From left to right: input image, followed by portions
of the image which contain un-reject patches after the sequential

evaluation of 1 (13.3% patches remaining), 10 (2.6%), 20 (0.01%)

and 30 (0.002%) support vectors. Note that in these images, a

pixel is displayed if it is part of any remaining un-rejected patch

at any scale, orientation or position This explains the apparent

discrepancy between the above percentages and the visual impres-

sion.

face, figure 5 shows the results on an image with multiple

faces.

Figure 7 shows the number of reduced set vectors used

to classify each patch of an image. The intensities values

of the pixels of the right image are proportional to the num-

ber of reduced set vectors used to classify the corresponding

spot in the left image (note that the intensities are displayed

at the center of the corresponding patches only). The uni-

form parts of the input image are easily rejected using a sin-

gle reduced set vector, whereas the cluttered background re-

quires more reduced set vectors. Note that very few patches

needed all the reduced set vectors (only the patches contain-

ing the faces used all the reduced set vectors).

Accuracy. Figure 6 shows a comparison of the accuracy

of the different methods. These R.O.C. were computed on

a test set containing 800 faces and 5000 non-faces. The ac-

curacy of the SRSM (100 reduced set vectors) is very sim-

ilar to the accuracy of the full SVM (8291 support vectors)

and the RS (100 reduced set vectors) which perform equally

well.

To compare our system with others, we used the Row-

4
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• Boosting is ideally suited to be used with box filters. 
• Techniques like AdaBoost, LogitBoost or GentleBoost can 

naturally learn a complex classifier from a cascade of weak 
classifiers.  
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Matching results

(after non-maximum suppression)

~1 second to search all scales
Felzenszwalb, Girshick, McAllester & Ramanan, 2010



Dlib C++ for Computer Vision

• Dlib is a general purpose cross-platform C++ library 
designed using contract programming and modern C++ 
techniques. 

• It is open source software and licensed under the Boost 
Software License. 

• Code is platform independent (Windows, Linux, MAC OS X). 
• Check out more details at the link - http://dlib.net/  
• Very useful set of vision and learning tools. 

29

http://dlib.net/license.html
http://dlib.net/


Why Dlib is useful?
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• What makes Dlib very 
cool, is its ability to train 
your own object 
detectors quickly and 
easily.  

• This is hard to do in 
OpenCV as it relies on 
something called “Hard 
Negative Mining”.  

• Requires setting tricky 
parameters, and can 
often takes hours/days 
to train a model. 



Why Dlib is useful?

30

• What makes Dlib very 
cool, is its ability to train 
your own object 
detectors quickly and 
easily.  

• This is hard to do in 
OpenCV as it relies on 
something called “Hard 
Negative Mining”.  

• Requires setting tricky 
parameters, and can 
often takes hours/days 
to train a model. 



Dlib - Make your own detector!
•  Dlib - uses the well known HOG - SVM pipeline for 

object detection - Dalal & Triggs 2005. 
• Does not rely on HNM, instead employs Structural Support 

Vector Machine (SVM). 
•  No need for negative training set, no messy parameters.  
• Using this tutorial authors were able to learn a face detector 

in just a few minutes using Dlib.  

31

Visualization 
of HOG Detector

http://blog.dlib.net/2014/02/dlib-186-released-make-your-own-object.html


Dlib versus OpenCV

32

Red Box - Dlib Blue Circles - OpenCV
Taken from http://blog.dlib.net/2014/02/dlib-186-released-make-your-own-object.html.  

http://blog.dlib.net/2014/02/dlib-186-released-make-your-own-object.html
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Red Box - Dlib Blue Circles - OpenCV
Taken from http://blog.dlib.net/2014/02/dlib-186-released-make-your-own-object.html.  

http://blog.dlib.net/2014/02/dlib-186-released-make-your-own-object.html


Dlib versus OpenCV

33
Taken from http://blog.dlib.net/2014/02/dlib-186-released-make-your-own-object.html.  

Visualization 
of HOG Detector

• Another example - 8 
images of stop signs 
downloaded and 
labeled.  

• Dlib was then used to 
create a HOG detector.  

http://blog.dlib.net/2014/02/dlib-186-released-make-your-own-object.html


CAFFE
• Deep-learning has taken the vision world by storm.  
• Essentially an extension of neural networks.  
• State of the art for object detection (e.g Imagenet). 
• CAFFE is one of the most popular packages. 

34Taken from - DIY Deep Learning for Vision.  

http://www.image-net.org/
http://caffe.berkeleyvision.org/
https://docs.google.com/presentation/d/1UeKXVgRvvxg9OUdh_UiC5G71UMscNPlvArsWER41PsU/edit?pli=1#slide=id.gc2fcdcce7_216_244


CAFFE
• Open framework, models, and worked examples 

for deep learning. 
• Pure C++ / CUDA architecture for deep learning. 
• Command line, Python, MATLAB interfaces. 
• Fast, well-tested code. 
• Tools, reference models, demos, and recipes. 
• Seamless switch between CPU and GPU.

35

Prototype Train Deploy

Taken from - DIY Deep Learning for Vision.  

https://docs.google.com/presentation/d/1UeKXVgRvvxg9OUdh_UiC5G71UMscNPlvArsWER41PsU/edit?pli=1#slide=id.gc2fcdcce7_216_244


CAFFE
• Pre-trained models are openly available at the CAFFE 

Model Zoo.  

• open collection of deep models to share innovation 

• VGG ILSVRC14 + Devil models in the zoo 

• Network-in-Network / CCCP model in the zoo 

• MIT Places scene recognition model in the zoo 

• help disseminate and reproduce research 

• bundled tools for loading and publishing models

36Taken from - DIY Deep Learning for Vision.  

https://github.com/BVLC/caffe/wiki/Model-Zoo
https://docs.google.com/presentation/d/1UeKXVgRvvxg9OUdh_UiC5G71UMscNPlvArsWER41PsU/edit?pli=1#slide=id.gc2fcdcce7_216_244


CAFFE
• Developed in Berkley.  
• Released under BSD-Clause 2 license.  
• See here for very good tutorial on its use.  
• Other packages in use - notably Torch 7 & MatConvNet. 
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https://github.com/BVLC/caffe/blob/master/LICENSE
https://docs.google.com/presentation/d/1UeKXVgRvvxg9OUdh_UiC5G71UMscNPlvArsWER41PsU/edit?pli=1#slide=id.gc2fcdcce7_216_0
http://torch.ch/
http://www.vlfeat.org/matconvnet/


Today

• Motivation - Object Detection/Tracking 
• Computer Vision as a “Black Box” - Considerations 
• Detection  

• Computer Vision as a Service (VMX, Project Oxford, Clarifai).  
• OpenCV 3.0 (face and pedestrian detectors, what’s new?) 
• DLib C++ (create your own detector!!!) 
• Caffe (Deep Learning) 

• Tracking 
• Correlation Filters (fast in tracking in just a few lines of code)  
• Predator (tracking an object efficiently/quickly)

38

Just a sampling - by no means a complete list!!!



Predator Tracker

• Predator  - or Track-Learning-Detection (TLD) 
• Based on Kalal et al. ICCV 2011.   
• Released under GPL v3.0.  

39

http://personal.ee.surrey.ac.uk/Personal/Z.Kalal/tld.html
https://github.com/zk00006/OpenTLD
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http://personal.ee.surrey.ac.uk/Personal/Z.Kalal/tld.html
https://github.com/zk00006/OpenTLD


Predator Tracker

40
Taken from https://github.com/zk00006/OpenTLD.  

https://github.com/zk00006/OpenTLD
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MULTI-CHANNEL CORRELATION FILTERS
HAMED KIANI1, TERENCE SIM1 AND SIMON LUCEY2 1School of Computing, NUS, Singapore
{hkiani,tsim}@comp.nus.edu.sg, simon.lucey@csiro.au 2CSIRO ICT Center, Australia

ABSTRACT

From a signal processing perspective, pattern
detection using modern descriptors like HOG can
be efficiently posed as a correlation between a
multi-channel image and a multi-channel detec-
tor/filter, which results in a single-channel re-
sponse indicating where the pattern (e.g. object)
has occurred. Here, we proposed a novel frame-
work for learning multi-channel filters efficiently
in the frequency domain, both in terms of com-
plexity and memory usage.

CONTRIBUTIONS
• Extending canonical correlation filter theory

to efficiently handle multi-channel signals
• A multi-channel detector whose training

memory is independent of the number of
training samples

• Superior performance to current state of the
art correlation filters, and superior computa-
tional and memory efficiency in comparison
to spatial detectors (e.g. linear SVM) with
comparable detection performance

MULTI-CHANNLE CFS

(i) Spatial domain:

(ii) Fourier domain:

Complexity: O(D3K3)

Memory: O(D2K2)

(iii) Fourier domain with variable re-ordering:

Complexity: O(DK3)

Memory: O(DK2)

NOTATION: ⇤: convolution operation, |y| = D, K:# of channels and V(a(j)) = [a(1)(j), ..., a(K)(j)]

COMPARISON WITH LINEAR SVM
250 500 1000 2000 4000 8000 16000 24000

MCCF 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
SVM 6.17 12.35 24.68 49.36 98.87 197.44 395.88 592.32
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Figure 1. Comparing MCCF with SVM + HOG on the problem of pedestrian detection using Daimler dataset. Top:
Memory usage (MB) of MCCF compared to SVM as a function of number of training images. Bottom: Detection rate
as a function of (a) FPR, (b) number of training images at FPR = 0.10, and (c) training time versus training size.
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Figure 2. Facial landmark detection on the LFW dataset.
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Figure 3. Car detection on the MIT Street Dataset.
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Correlation Filters

• Can build a correlation filter from 5 lines of MATLAB code!!!
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xx

+ �1)



Correlation Filters

• Can build a correlation filter from 5 lines of MATLAB code!!!

42
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methods for creating filters, such as cropping a template
from an image, produce strong peaks for the target but
also falsely respond to background. As a result they are
not particularly robust to variations in target appearance
and fail on challenging tracking problems. Average of
Synthetic Exact Filters (ASEF), Unconstrained Minimum
Average Correlation Energy (UMACE), and Minimum
Output Sum of Squared Error (MOSSE) (introduced in
this paper) produce filters that are more robust to appear-
ance changes and are better at discriminating between tar-
gets and background. As shown in Figure 2, the result is
a much stronger peak which translates into less drift and
fewer dropped tracks. Traditionally, ASEF and UMACE
filters have been trained offline and are used for object de-
tection or target identification. In this research, we have
modified these techniques to be trained online and in an
adaptive manor for visual tracking. The result is tracking
with state of the art performance that retains much of the
speed and simplicity of the underlying correlation based
approach.

Despite the simplicity of the approach, tracking based
on modified ASEF, UMACE, or MOSSE filters performs
well under changes in rotation, scale, lighting, and par-
tial occlusion (See Figure 1). The Peak-to-Sidelobe Ratio
(PSR), which measures the strength of a correlation peak,
can be used to detect occlusions or tracking failure, to
stop the online update, and to reacquire the track if the
object reappears with a similar appearance. More gen-
erally, these advanced correlation filters achieve perfor-
mance consistent with the more complex trackers men-
tioned earlier; however, the filter based approach is over
20 times faster and can process 669 frames per second
(See Table 1).

Table 1: This table compares the frame rates of the MOSSE
tracker to published results for other tracking systems.

Algorithm Frame Rate CPU
FragTrack[1] realtime Unknown
GBDL[19] realtime 3.4 Ghz Pent. 4
IVT [17] 7.5fps 2.8Ghz CPU

MILTrack[2] 25 fps Core 2 Quad
MOSSE Filters 669fps 2.4Ghz Core 2 Duo

The rest of this paper is organized as follows. Section 2
reviews related correlation filter techniques. Section 3 in-
troduces the MOSSE filter and how it can be used to create
a robust filter based tracker. Section 4 presents experimen-
tal results on seven video sequences from [17]. Finally,
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Figure 2: This figure shows the input, filters, and correlation
output for Frame 25 of the fish test sequence. The three correla-
tion filters produce peaks that are much more compact than the
one produced by the Naive filter.

Section 5 will revisit the major findings of this paper.

2 Background

In the 1980’s and 1990’s, many variants of correla-
tion filters, including Synthetic Discriminant Functions
(SDF) [7, 6], Minimum Variance Synthetic Discrimi-
nant Functions (MVSDF) [9], Minimum Average Cor-
relation Energy (MACE) [11], Optimal Tradeoff Filters
(OTF) [16], and Minimum Squared Error Synthetic Dis-
criminant Functions (MSESDF) [10]. These filters are
trained on examples of target objects with varying appear-
ance and with enforced hard constraints such that the fil-
ters would always produce peaks of the same height. Most
relevant is MACE which produces sharp peaks and high
PSRs.

In [12], it was found that the hard constraints of SDF
based filters like MACE caused issues with distortion tol-
erance. The solution was to eliminate the hard constraints
and instead to require the filter to produce a high av-
erage correlation response. This new type of “Uncon-
strained” correlation filter called Maximum Average Cor-
relation Height (MACH) led to a variant of MACE called
UMACE.

A newer type of correlation filter called ASEF [3] in-
troduced a method of tuning filters for particular tasks.
Where earlier methods just specify a single peak value,
ASEF specifies the entire correlation output for each train-
ing image. ASEF has performed well at both eye local-
ization [3] and pedestrian detection [4]. Unfortunately

2

Taken from Bolme et al. CVPR 2010.
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ABSTRACT

From a signal processing perspective, pattern
detection using modern descriptors like HOG can
be efficiently posed as a correlation between a
multi-channel image and a multi-channel detec-
tor/filter, which results in a single-channel re-
sponse indicating where the pattern (e.g. object)
has occurred. Here, we proposed a novel frame-
work for learning multi-channel filters efficiently
in the frequency domain, both in terms of com-
plexity and memory usage.

CONTRIBUTIONS
• Extending canonical correlation filter theory

to efficiently handle multi-channel signals
• A multi-channel detector whose training

memory is independent of the number of
training samples

• Superior performance to current state of the
art correlation filters, and superior computa-
tional and memory efficiency in comparison
to spatial detectors (e.g. linear SVM) with
comparable detection performance

MULTI-CHANNLE CFS

(i) Spatial domain:

(ii) Fourier domain:

Complexity: O(D3K3)

Memory: O(D2K2)

(iii) Fourier domain with variable re-ordering:

Complexity: O(DK3)

Memory: O(DK2)

NOTATION: ⇤: convolution operation, |y| = D, K:# of channels and V(a(j)) = [a(1)(j), ..., a(K)(j)]

COMPARISON WITH LINEAR SVM
250 500 1000 2000 4000 8000 16000 24000

MCCF 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
SVM 6.17 12.35 24.68 49.36 98.87 197.44 395.88 592.32
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Figure 1. Comparing MCCF with SVM + HOG on the problem of pedestrian detection using Daimler dataset. Top:
Memory usage (MB) of MCCF compared to SVM as a function of number of training images. Bottom: Detection rate
as a function of (a) FPR, (b) number of training images at FPR = 0.10, and (c) training time versus training size.
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Figure 2. Facial landmark detection on the LFW dataset.
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Figure 3. Car detection on the MIT Street Dataset.
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Abstract

Modern descriptors like HOG and SIFT are now com-
monly used in vision for pattern detection within im-
age and video. From a signal processing perspective
this detection process can be efficiently posed as a cor-
relation/convolution between a multi-channel image and
a multi-channel detector/filter which results in a single-
channel response map indicating where the pattern (e.g.
object) has occurred. In this paper we propose a novel
framework for learning a multi-channel detector/filter ef-
ficiently in the frequency domain (both in terms of training
time and memory footprint) which we refer to as a multi-
channel correlation filter. To demonstrate the effectiveness
of our strategy, we evaluate it across a number of visual de-
tection/localization tasks where we: (i) exhibit superior per-
formance to current state of the art correlation filters, and
(ii) superior computational and memory efficiencies com-
pared to state of the art spatial detectors.

1. Introduction
In computer vision it is now rare for tasks like convo-

lution/correlation to be performed on single channel image
signals (e.g. 2D array of intensity values). With the advent
of advanced descriptors like HOG [4] and SIFT [12] convo-
lution/correlation across multi-channel signals has become
the norm rather than the exception in most visual detection
tasks. Most of these image descriptors can be viewed as
multi-channel images/signals with multiple measurements
(such the oriented edge energies) associated with each pixel
location. We shall herein refer to all image descriptors as
multi-channel images. An example of multi-channel corre-
lation can be seen in Figure 1 where a multi-channel image
is convolved/correlated with a multi-channel filter/detector
in order to obtain a single-channel response. The peak of
the response (in white) indicating where the pattern of in-
terest is located.

Like single channel signals, correlation between two
multi-channel signals is rarely performed naively in the spa-
tial domain. Instead, the fast Fourier transform (FFT) af-
fords the efficient application of correlating a desired tem-
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Figure 1. An example of multi-channel correlation/convolution
where one has a multi-channel image x correlated/convolved with
a multi-channel filter h to give a single-channel response y. By
posing this objective in the frequency domain, our multi-channel
correlation filter approach attempts to give a computational &
memory efficient strategy for estimating h given x and y.

plate/filter with a signal. Contrastingly, however, most tech-
niques for estimating a detector for such a purpose (i.e. de-
tection/tracking through convolution) are performed in the
spatial domain [4]. It is this dilemma that is at the heart of
our paper.

This has not always been the case. Correlation fil-
ters, developed initially in the seminal work of Hester and
Casasent [7], are a method for learning a template/filter
in the frequency domain that rose to some prominence in
the 80s and 90s. Although many variants have been pro-
posed [7, 10, 11], the approach’s central tenet is to learn
a filter, that when correlated with a set of training signals,
gives a desired response (typically a peak at the origin of
the object, with all other regions of the correlation response
map being suppressed). Like correlation itself, one of the
central advantages of the approach is that it attempts to learn
the filter in the frequency domain due to the efficiency of
correlation/convolution in that domain. Hitherto, correla-
tion filter theory, to our knowledge, has been restricted to
single-channel signals/filters. In this paper we present an
efficient strategy for handling multi-channel signals/filters
that has numerous applications throughout vision and learn-
ing.

Contributions: In this paper we make the following con-
tributions

1

Kiani, Sim and Lucey ICCV 2013.



Kernelized Correlation Filters

• State of the art are “Kernelized Correlation Filters”.  
• Code available in MATLAB and Python. 

45Henriques et al. PAMI 2015.

http://home.isr.uc.pt/~henriques/circulant/tracker_release2.zip
http://rodrigob.github.io/#code
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